搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶Ag晶化过程中不同类型晶核结构的识别与跟踪

李媛 彭平

引用本文:
Citation:

非晶Ag晶化过程中不同类型晶核结构的识别与跟踪

李媛, 彭平

Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag

Li Yuan, Peng Ping
PDF
HTML
导出引用
  • 采用分子动力学模拟研究了非晶Ag的等温晶化过程, 通过原子轨迹逆向追踪法分析了不同类型晶体团簇的结构遗传与组态演化. 在团簇类型指数法的基础上, 根据基本团簇种类与联结方式不同, 提出了一种可区分fcc单晶、多晶与混晶团簇的分析方法. 在非晶Ag等温晶化过程中, 基于团簇结构的连续遗传性特征, 发展了一种可区分fcc单晶、多晶与混晶晶胚与晶核的结构分析技术. 结果发现: 不论临界尺寸还是几何构型, 不同类型的晶核结构都存在差异, 其中fcc单晶临界尺寸最小, 多晶次之, 混晶最大; fcc单晶与多晶壳层原子中有少量hcp和bcc原子, 而混晶壳层则全部为非晶类原子, 并且fcc单晶、多晶与混晶的临界晶核都不是球型结构.
    The isothermal crystallization of amorphous Ag is investigated by a molecular dynamics (MD) simulation, and the heredity and evolution of different types of crystalline clusters aretracked and analyzed by a reverse tracking method of atom trajectories with the help of cluster-type index method (CTIM) based on Honeycutt-Anderson (H-A) bond-type index. According to the difference in the type of crystalline cluster and the linkage mode, i.e., vertex-sharing (VS), edge-sharing (ES), face-sharing (FS) and intercross-sharing (IS), a cluster analysis method which can efficiently characterize fcc single-crystal, fcc poly-crystal and fcc hydrid-crystal, is proposed. That is, the IS-linkage of fcc basic clusters, i.e., a fcc medium range order, is defined as a fcc single-crystal cluster. The extended cluster of fccbasic clusterslinked by ISand FS modes is named fcc poly-crystal clusters. In the case of IS-linkages, if the majority of core atoms arefcc atoms, the extended cluster composed of fcc, hcp and bcc basic clusters will be regarded as a fcc hydrid-crystal cluster. Moreover, a structural analysis method of critical nuclei distinguishing embryosis also developed in terms of the hereditary characteristics of various crystalline clusters. In this scheme, the extended cluster which has only transient heredity and no continuous heredity is defined as an embryo, while it will be named nuclei if part of core atoms in extended clusters can keep cluster type of atoms unchanged and be continuously passed down in the early stage of crystallization. Thus, corresponding to the onset time/temperature of continuous heredity, the critical nuclei of fcc singe-crystals, fcc poly-crystals and fcc hybrid-crystals can be identified and characterized. It is found that the nuclei of fcc crystalsemerge after the steep drop of total energy of system and before the abrupt increase of sizesof tracked clusters. And regardless of critical sizes or geometric configurations, an evident difference exists among fcc singe-crystal, hybrid-crystal clusters and fcc poly-crystal clusters, of which the fcc single-crystal nucleus is the smallest (~1.6 nm ×1.0 nm × 1.1 nm), followed by poly-crystal nucleus (~1.7 nm × 1.0 nm × 1.6 nm) and hydrid-crystal nucleus (~2.3 nm × 2.0 nm × 2.4 nm) in sequence. There are a few hcp and bcc atoms at surfaces, i.e. shells, of single-crystal and poly-crystal nucleus, but neither hcp nor bcc atom can be detected at the shell of fcc hydrid-crystal nucleus. And theconfiguration of fcc single-crystal, poly-crystal and hydrid-crystal critical nuclei are all non-spherical.
      通信作者: 彭平, ppeng@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51871096)资助的课题.
      Corresponding author: Peng Ping, ppeng@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51871096).
    [1]

    Jiang Y H, Zou J T, Xiao P, Liang S H, Liu F, Gu B 2018 J. Non-Cryst. Solids 481 608Google Scholar

    [2]

    CelikA F, Kazanc S 2013 Physica B 63

    [3]

    Hoang V V, Long N T, Son D N 2014 Comp. Mater. Sci. 95 491Google Scholar

    [4]

    Zhou K, Wang H P, Chang J, Wei B 2015 Chem. Phys. Lett. 639 105Google Scholar

    [5]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258Google Scholar

    [6]

    Lee B S, Burr G W, Shelby R M, Raoux S, Rettner C T, Bogle S N, Darmawikarta K, Bishop S G, Abelson J R 2009 Science 326 980Google Scholar

    [7]

    Lechner W, Dellago C 2008 J. Chem. Phys. 129 114707Google Scholar

    [8]

    Brostow W, Chybicki M, Laskowski R, Rybicki J 1998 Phys. Rev. B 57 13448Google Scholar

    [9]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101Google Scholar

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101Google Scholar

    [10]

    Kelton K F 1991 Solid. State. Phys. 45 75Google Scholar

    [11]

    Liu J, Zhao J Z, Hu Z Q 2007 Mat. Sci. Eng. A 452 103

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [13]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 620

    [14]

    Li R, Wu Y, Xiao J 2014 J. Chem. Phys. 140 046102

    [15]

    Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P 2016 Sci. Rep. 6 31653Google Scholar

    [16]

    Yu D Q, Chen M, Yang H, Lü Y J 2009 Phil. Mag. Lett. 89 44Google Scholar

    [17]

    Zhang S L, Wang L M, Zhang X Y, Qi L, Zhang S H, Ma M Z, Liu R P 2015 Sci. Rep. 5 8590Google Scholar

    [18]

    Bai Y W, Bian X F, Qin J Y, Hu L N, Yang J F, Zhang K, Zhao X L, Zhang S, Huang Y Y, Yang C C 2014 J. Appl. Phys. 115 063106Google Scholar

    [19]

    Kalikmanov V I 2013 Nucleation Theory (Vol. 860)(Dordrecht: Springe) pp17-41

    [20]

    Plimpton S 1995 Fast Parallel Algorithms for Short-range Molecular Dynamics (Academic Press Professional, Inc.) pp1−19

    [21]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comp. Mater. Sci. 46 142Google Scholar

    [22]

    Lei Y W, Sun X R, Zhou R L, Bo Z 2018 Comp. Mater. Sci. 150 1Google Scholar

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [24]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [25]

    Verlet L 1967 Health Phys. 22 79

    [26]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [27]

    Zhou L L, Yang R Y, Tian Z A, Mo Y F, Liu R S 2017 J. Alloy. Compd. 690 633Google Scholar

    [28]

    Sun B, Sun Z W, Ouyang W Z, Xu S H 2014 J.Chem. Phys. 140 134904Google Scholar

    [29]

    Zhang H T, Mo Y F, Liu R S, Tian Z, Liu H R, Hou Z Y, Zhou L L, Liang Y C, Peng P 2018 Mater. Res. Express 5 036507Google Scholar

    [30]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 629

    [31]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 3313

    [32]

    Wen D D, Peng P, Jiang Y Q, Liu R S 2013 J. Non-Crys. Solids 378 61Google Scholar

    [33]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 Chem. Phys. Lett. 491 172Google Scholar

    [34]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75Google Scholar

    [35]

    Streitz F H, Glosli J N, Patel M V 2006 Phys. Rev. Lett. 96 225701Google Scholar

  • 图 1  (a)体系平均每个原子能量E与(b)双体分布函数g(r)随弛豫时间t的变化

    Fig. 1.  (a) Systemic total energy per atom E and (b) pair distribution function g(r) as a function of relaxation time t.

    图 2  (a)典型晶体原子数目Ntotal随弛豫时间t的变化; (b)特征时间节点三类晶体原子的空间分布(红色、绿色和蓝色球分别表示fcc, hcp和bcc原子)

    Fig. 2.  (a) Variation of number Ntotal of various crystalline atoms with relaxation time t; (b) their spatial distributions at several special times, where red, green and blue balls represent fcc, hcp and bcc atoms, respectively.

    图 3  fcc基本原子团的四种连接方式示意图 (红色、灰色和橙色球分别表示中心原子、表面原子和共享原子)

    Fig. 3.  Schematic diagram of VS-, ES-, FS- and IS-linkages between two basic fcc clusters, where red, gray and orange balls represent core atoms, shell atoms and shared atoms, respectively.

    图 4  三种fcc扩展晶体团簇及其芯部原子示意图(红色、绿色和灰色球分别表示fcc原子、hcp原子和其他表面原子, 芯原子间实线表示IS联结, 虚线表示FS联结) (a)单晶团簇; (b)多晶团簇; (c)混晶团簇

    Fig. 4.  Schematic diagram of three kinds of fcc extended clusters and their core atoms. Red, green and gray balls represent fcc, hcp, and other shell atoms, respectively. The solid line and dot line between core atoms represent IS-linkages and FS-linkages between fcc basic clusters, respectively. (a) Single-crystal cluster; (b) poly-crystal cluster; (c) hydrid-crystal cluster.

    图 5  被追踪fcc团簇芯原子数目n(t)及其可遗传分数f(t)随弛豫时间t的变化

    Fig. 5.  Number of core atoms n(t) and heritable fraction f(t) of traced fcc extended clusters as a function of relaxation time t.

    图 6  fcc单晶团簇芯原子的遗传与演化示意图. 左边为瞬态遗传, 右边为连续遗传, 深红色与浅红色球分别表示在两种遗传模式中可遗传和不具有遗传性的原子

    Fig. 6.  Schematic diagram of heredity and evolution of core atoms in the traced single-crystal cluster. Dark and light red balls represent heritable atoms and other atoms without heredity in transient and continuous heredities, respectively.

    图 7  三种类型fcc临界晶核示意图 (a)单晶核; (b)多晶核; (c)混晶核(红色、绿色、蓝色和灰色球分别表示fcc, hcp, bcc和其他表面原子)

    Fig. 7.  Schematic diagram of critical crystalline nuclei and their core atoms. Red, green, blue and gray balls denote fcc, hcp, bcc and other shell atoms, respectively. (a) Single-crystal; (b) poly-crystal; (c) hydrid-crystal.

    表 1  被追踪团簇在不同弛豫时间t的芯原子总数n(t)、可遗传至下一个时刻的原子数目ns(t)、可连续遗传的原子数目nc(t)及其中的IS和FS联结数lISc(t)和lFSc(t)

    Table 1.  The number of core atoms n(t), the number ns(t) and nc(t) of heritable core atoms in transient and continuous heredities at relaxation time t as well as the number lISc(t) and lFSc(t) of IS- and FS-linkages between heritable core atoms in the continuous heredity mode.

    Single-crystalPoly-crystalHydrid-crystal
    t/psnnsnclIScnnsnclISclFScnnsnclISc
    2005355134
    190383131824131318201175656116
    1803825223839252238066423352
    1703619132036191320078271721
    1603624111539241115069351315
    1502720882820881522698
    1403021773021771703487
    1303018653018651653465
    12014931169311371131
    11014710177100291110
    10022910249100371310
    902113102313100522010
    801812102012100351610
    702711103113100411810
    602271024710032910
    5018910189100201010
    401370013700014700
    3021007200011200
    下载: 导出CSV
  • [1]

    Jiang Y H, Zou J T, Xiao P, Liang S H, Liu F, Gu B 2018 J. Non-Cryst. Solids 481 608Google Scholar

    [2]

    CelikA F, Kazanc S 2013 Physica B 63

    [3]

    Hoang V V, Long N T, Son D N 2014 Comp. Mater. Sci. 95 491Google Scholar

    [4]

    Zhou K, Wang H P, Chang J, Wei B 2015 Chem. Phys. Lett. 639 105Google Scholar

    [5]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258Google Scholar

    [6]

    Lee B S, Burr G W, Shelby R M, Raoux S, Rettner C T, Bogle S N, Darmawikarta K, Bishop S G, Abelson J R 2009 Science 326 980Google Scholar

    [7]

    Lechner W, Dellago C 2008 J. Chem. Phys. 129 114707Google Scholar

    [8]

    Brostow W, Chybicki M, Laskowski R, Rybicki J 1998 Phys. Rev. B 57 13448Google Scholar

    [9]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101Google Scholar

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101Google Scholar

    [10]

    Kelton K F 1991 Solid. State. Phys. 45 75Google Scholar

    [11]

    Liu J, Zhao J Z, Hu Z Q 2007 Mat. Sci. Eng. A 452 103

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [13]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 620

    [14]

    Li R, Wu Y, Xiao J 2014 J. Chem. Phys. 140 046102

    [15]

    Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P 2016 Sci. Rep. 6 31653Google Scholar

    [16]

    Yu D Q, Chen M, Yang H, Lü Y J 2009 Phil. Mag. Lett. 89 44Google Scholar

    [17]

    Zhang S L, Wang L M, Zhang X Y, Qi L, Zhang S H, Ma M Z, Liu R P 2015 Sci. Rep. 5 8590Google Scholar

    [18]

    Bai Y W, Bian X F, Qin J Y, Hu L N, Yang J F, Zhang K, Zhao X L, Zhang S, Huang Y Y, Yang C C 2014 J. Appl. Phys. 115 063106Google Scholar

    [19]

    Kalikmanov V I 2013 Nucleation Theory (Vol. 860)(Dordrecht: Springe) pp17-41

    [20]

    Plimpton S 1995 Fast Parallel Algorithms for Short-range Molecular Dynamics (Academic Press Professional, Inc.) pp1−19

    [21]

    Yang Z Y, Lu Z X, Zhao Y P 2009 Comp. Mater. Sci. 46 142Google Scholar

    [22]

    Lei Y W, Sun X R, Zhou R L, Bo Z 2018 Comp. Mater. Sci. 150 1Google Scholar

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [24]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [25]

    Verlet L 1967 Health Phys. 22 79

    [26]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [27]

    Zhou L L, Yang R Y, Tian Z A, Mo Y F, Liu R S 2017 J. Alloy. Compd. 690 633Google Scholar

    [28]

    Sun B, Sun Z W, Ouyang W Z, Xu S H 2014 J.Chem. Phys. 140 134904Google Scholar

    [29]

    Zhang H T, Mo Y F, Liu R S, Tian Z, Liu H R, Hou Z Y, Zhou L L, Liang Y C, Peng P 2018 Mater. Res. Express 5 036507Google Scholar

    [30]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 629

    [31]

    Lad K N, Jakse N, Pasturel A 2012 J. Chem. Phys. 136 3313

    [32]

    Wen D D, Peng P, Jiang Y Q, Liu R S 2013 J. Non-Crys. Solids 378 61Google Scholar

    [33]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 Chem. Phys. Lett. 491 172Google Scholar

    [34]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75Google Scholar

    [35]

    Streitz F H, Glosli J N, Patel M V 2006 Phys. Rev. Lett. 96 225701Google Scholar

  • [1] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [2] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为. 物理学报, 2015, 64(16): 163601. doi: 10.7498/aps.64.163601
    [3] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟. 物理学报, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [4] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [5] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [6] 刘丽霞, 侯兆阳, 刘让苏. 过冷液体钾形核初期微观动力学机理的模拟研究. 物理学报, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [7] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [8] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [9] 李勇, 刘锦超, 芦鹏飞, 杨向东. 从常温常压到超临界乙醇的分子动力学模拟. 物理学报, 2010, 59(7): 4880-4887. doi: 10.7498/aps.59.4880
    [10] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [11] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [12] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [13] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [14] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟. 物理学报, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [16] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法. 物理学报, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [17] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究. 物理学报, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [18] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法. 物理学报, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [19] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为. 物理学报, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  10072
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-02-14
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回