搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀关联径向偏振部分相干光的产生

刘森森 宋华冬 林伟强 陈旭东 蒲继雄

引用本文:
Citation:

非均匀关联径向偏振部分相干光的产生

刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄

Synthesis of ununiformly correlated radially polarized partially coherent beam

Liu Sen-Sen, Song Hua-Dong, Lin Wei-Qiang, Chen Xu-Dong, Pu Ji-Xiong
PDF
HTML
导出引用
  • 从理论和实验两方面对非均匀关联径向偏振部分相干光的产生进行了研究. 理论上, 基于相位关联与相干度的联系, 推导出了非均匀关联径向偏振部分相干光的2 × 2阶交叉谱密度矩阵及相干度分布. 实验上, 利用一个相位型液晶空间光调制器的不同区域, 对入射的完全相干的径向偏振光的两个正交偏振分量分别加载随机相位调制, 并实验测量了这种光束的相干度分布及其对光强分布的影响. 实验结果验证了光束相干度的非均匀关联结构, 并且通过改变随机相位的高斯调制半宽可以改变光束的相干性分布. 研究表明, 随着随机相位的高斯调制半宽的增加, 光束中两点间的相干度逐渐减小, 其光强分布由圆环状逐渐变化为类平顶的光强分布. 这种非均匀关联的径向偏振部分相干光在激光微操纵和材料加工等领域具有一定的潜在应用价值.
    Since the unified theory of coherence and polarization for partially coherent vector beams was proposed by Gori and Wolf, the characterization, generation and propagation of partially coherent vector beams have been extensively studied. During the last decade, partially coherent vector beams with non-uniform polarization, also referred to as cylindrical vector partially coherent beams, have gained more and more attention. It was found that the intensity profile of focused azimuthally/radially polarized beam could be shaped by varying its initial spatial coherence. This characteristic may have potential applications in material thermal processing and particle trapping. Until now, there have been several reports concerning the generation of cylindrical vector partially coherent beams. However, in most of these reports a ground-glass diffuser was used, which generally restricts the generation of shell-model sources. In this paper, we theoretically and experimentally investigate the generation of radially polarized partially coherent beams with non-uniform correlation. According to the relation between phase correlation and optical coherence, we theoretically investigate the 2 × 2 cross-spectral density matrix and the coherence distribution of our generated non-uniformly correlated radially polarized partially coherent beams. In experiment, we generate dynamic random phase patterns with uniform distribution in time and inverse Gaussian distribution in space. A complete coherent radially polarized beam is divided into two parts by a polarizing beam splitter, i.e., the transmitted x-polarization component (HG10 beam) and the reflected y-polarization component (HG01 beam). The two orthogonally polarized components are respectively modulated with the two halves of a single phase-only liquid crystal spatial light modulator, thus generating a radially polarized partially coherent beam. We measure the correlation distribution of the generated beam in Young’s two-pinhole experiment. It is shown that the experimental observations are in agreement with our theoretical analyses. The generated partially coherent beam has an un-uniform correlation structure, and its coherence degree may be controlled by varying the Gaussian modulation half-width of the random phase. Our experimental results have also shown that the intensity profile of the radially polarized partially coherent beam can be modulated with the Gaussian modulation half-width. With the increase of Gaussian modulation half-widths and the gradual decrease of coherence degree, the intensity profile gradually transforms from a dark hollow beam profile into a flat-topped-like beam profile. The radially polarized partially coherent beams with non-uniform correlation may have some applications in optical manipulation and material thermal processing.
      通信作者: 陈旭东, chenxd@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61605049, 61575070)、福建省自然科学基金(批准号: 2018J01003)、华侨大学高级人才研究基金(批准号: 11BS110)和华侨大学研究生科研创新能力培育计划资助的课题.
      Corresponding author: Chen Xu-Dong, chenxd@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605049, 61575070), the Natural Science Foundation of Fujian Province, China (Grant No. 2018J01003), the Research Foundation for Advanced Talents of Huaqiao University, China (Grant No. 11BS110), and the Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University, China.
    [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) pp340―373

    [2]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [3]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar

    [4]

    Lin H C, Zhou X M, Chen Z Y, Sasaki O, Li Y, Pu J X 2018 J. Opt. Soc. Am. A 35 1974Google Scholar

    [5]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp 174―179

    [6]

    Zhan Q W 2014 Vectorial Optical Fields: Fundamentals and Applications (Hackensack New Jersey: World Scientific) pp 221―277

    [7]

    Ostrovsky A S, Rodriguez-Zurita G, Meneses-Fabian C, Olvera-Santamaria M A, Rickenstorff-Parrao C 2010 Opt. Express 18 12864Google Scholar

    [8]

    Zhang Y T, Cui Y, Wang F, Cai Y J 2015 Opt. Express 23 11483Google Scholar

    [9]

    Guo M W, Zhao D M 2018 Opt. Express 26 8581Google Scholar

    [10]

    Cai Y J, Korotkova O, Eyyuboglu H T, Baykal Y 2008 Opt. Express 16 15834Google Scholar

    [11]

    Mei Z R, Korotkova O, Shchepakina E 2013 J. Opt. 15 025705Google Scholar

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769Google Scholar

    [13]

    Tong Z S, Korotkova O 2012 J. Opt. Soc. Am. A 29 2154Google Scholar

    [14]

    Cai Y J, Chen Y H, Wang F 2014 J. Opt. Soc. Am. A 31 2083Google Scholar

    [15]

    张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 物理学报 64 034205Google Scholar

    Zhang L, Chen Z Y, Cui S W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205Google Scholar

    [16]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395Google Scholar

    [17]

    Dong Y M, Cai Y J, Zhao C L, Yao M 2011 Opt. Express 19 5979Google Scholar

    [18]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 324Google Scholar

    [19]

    Wang F, Liu X L, Liu L, Yuan Y S, Cai Y J 2013 Appl. Phys. Lett. 103 91102Google Scholar

    [20]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099Google Scholar

    [21]

    Luo Y M, Lü B D 2010 J. Opt. 12 115703Google Scholar

    [22]

    Lin H C, Pu J X 2009 J. Mod. Opt. 56 1296Google Scholar

    [23]

    Wang F, Cai Y J, Dong Y M, Korotkova O 2012 Appl. Phys. Lett. 100 51108Google Scholar

    [24]

    Wu G F, Wang F, Cai Y J 2012 Opt. Express 20 28301Google Scholar

    [25]

    Cui S W, Chen Z Y, Zhang L, Pu J X 2013 Opt. Lett. 38 4821Google Scholar

    [26]

    Chen X D, Chang C C, Chen Z Y, Lin Z L, Pu J X 2016 Opt. Express 24 21587Google Scholar

    [27]

    昌成成, 蒲继雄, 陈子阳, 陈旭东 2017 物理学报 66 054212Google Scholar

    Chang C C, Pu J X, Chen Z Y, Chen X D 2017 Acta Phys. Sin. 66 054212Google Scholar

    [28]

    Tervo J, Setala T, Friberg A T 2012 Opt. Lett. 37 151Google Scholar

    [29]

    Zhang B, Chu X L, Li Q 2002 J. Opt. Soc. Am. A 19 1370Google Scholar

    [30]

    Ji X L, Zhang T R, Jia X H 2009 J. Opt. A: Pure Appl. Opt. 11 105705Google Scholar

    [31]

    Zhou G Q 2009 J. Opt. A: Pure Appl. Opt. 12 015701Google Scholar

    [32]

    Zhang Y J, Ding B F, Suyama T 2010 Phys. Rev. A 81 109Google Scholar

    [33]

    Zhao C L, Cai Y J 2011 Opt. Lett. 36 2251Google Scholar

  • 图 1  产生非均匀关联径向偏振部分相干光的光路示意图

    Fig. 1.  An optical arrangement for producing partially coherent radially polarized beam with non-uniform correlation

    图 2  动态相位图样的一帧图样, 高斯调制半宽${\sigma }$ = 20 (即${\sigma _x}$ = ${\sigma _y}$ = 20)

    Fig. 2.  One frame of dynamic phase patterns. Both the left pattern and the right one are generated with ${\sigma }$ = 20 (i.e. ${\sigma _x}$ = ${\sigma _y}$ = 20)

    图 3  (a)利用杨氏-双孔干涉实验测量相干度的原理图; (b)相干度的测量结果

    Fig. 3.  (a) The schematics for measuring the coherence degree by two-pinhole interference experiment; (b) experimental resuls and fitting results of coherence degree

    图 4  不同调制半宽的动态随机相位图的一帧 (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    Fig. 4.  One frame of dynamic phase patterns with different Gaussian modulaton half-widths: (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    图 5  两个小孔位置之间的相干度随高斯调制半宽${\sigma }$变化的曲线

    Fig. 5.  Experimental results of coherence degree between two fixed points as a function of ${\sigma }$

    图 6  光束质量因子M2随高斯调制半宽${\sigma }$变化的曲线

    Fig. 6.  Experimental results of M2 as a function of ${\sigma }$

    图 7  不同调制半宽度下的部分相干径向偏振光的光强分布图样 (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    Fig. 7.  Intensity distributions of partially coherent radially polarized beams generated with different ${\sigma }$: (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    图 8  不同调制半宽度下径向偏振部分相干光经过0°偏振片后的光斑图样 (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    Fig. 8.  Intensity profiles of partially coherent radially polarized beams with different ${\sigma }$ after passing through a linear polarizer with a transmission angle of 0°: (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    图 9  不同调制半宽度下径向偏振部分相干光经过90°偏振片后的光斑图样 (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

    Fig. 9.  Intensity profiles of partially coherent radially polarized beams with different ${\sigma }$ after passing through a linear polarizer with a transmission angle of 90°: (a) ${\sigma }$ = ∞; (b) ${\sigma }$ = 15; (c) ${\sigma }$ = 10; (d) ${\sigma }$ = 3

  • [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) pp340―373

    [2]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [3]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics 10 327Google Scholar

    [4]

    Lin H C, Zhou X M, Chen Z Y, Sasaki O, Li Y, Pu J X 2018 J. Opt. Soc. Am. A 35 1974Google Scholar

    [5]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp 174―179

    [6]

    Zhan Q W 2014 Vectorial Optical Fields: Fundamentals and Applications (Hackensack New Jersey: World Scientific) pp 221―277

    [7]

    Ostrovsky A S, Rodriguez-Zurita G, Meneses-Fabian C, Olvera-Santamaria M A, Rickenstorff-Parrao C 2010 Opt. Express 18 12864Google Scholar

    [8]

    Zhang Y T, Cui Y, Wang F, Cai Y J 2015 Opt. Express 23 11483Google Scholar

    [9]

    Guo M W, Zhao D M 2018 Opt. Express 26 8581Google Scholar

    [10]

    Cai Y J, Korotkova O, Eyyuboglu H T, Baykal Y 2008 Opt. Express 16 15834Google Scholar

    [11]

    Mei Z R, Korotkova O, Shchepakina E 2013 J. Opt. 15 025705Google Scholar

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769Google Scholar

    [13]

    Tong Z S, Korotkova O 2012 J. Opt. Soc. Am. A 29 2154Google Scholar

    [14]

    Cai Y J, Chen Y H, Wang F 2014 J. Opt. Soc. Am. A 31 2083Google Scholar

    [15]

    张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄 2015 物理学报 64 034205Google Scholar

    Zhang L, Chen Z Y, Cui S W, Liu J L, Pu J X 2015 Acta Phys. Sin. 64 034205Google Scholar

    [16]

    Gu Y L, Gbur G 2013 Opt. Lett. 38 1395Google Scholar

    [17]

    Dong Y M, Cai Y J, Zhao C L, Yao M 2011 Opt. Express 19 5979Google Scholar

    [18]

    Dong Y M, Wang F, Zhao C L, Cai Y J 2012 Phys. Rev. A 86 324Google Scholar

    [19]

    Wang F, Liu X L, Liu L, Yuan Y S, Cai Y J 2013 Appl. Phys. Lett. 103 91102Google Scholar

    [20]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099Google Scholar

    [21]

    Luo Y M, Lü B D 2010 J. Opt. 12 115703Google Scholar

    [22]

    Lin H C, Pu J X 2009 J. Mod. Opt. 56 1296Google Scholar

    [23]

    Wang F, Cai Y J, Dong Y M, Korotkova O 2012 Appl. Phys. Lett. 100 51108Google Scholar

    [24]

    Wu G F, Wang F, Cai Y J 2012 Opt. Express 20 28301Google Scholar

    [25]

    Cui S W, Chen Z Y, Zhang L, Pu J X 2013 Opt. Lett. 38 4821Google Scholar

    [26]

    Chen X D, Chang C C, Chen Z Y, Lin Z L, Pu J X 2016 Opt. Express 24 21587Google Scholar

    [27]

    昌成成, 蒲继雄, 陈子阳, 陈旭东 2017 物理学报 66 054212Google Scholar

    Chang C C, Pu J X, Chen Z Y, Chen X D 2017 Acta Phys. Sin. 66 054212Google Scholar

    [28]

    Tervo J, Setala T, Friberg A T 2012 Opt. Lett. 37 151Google Scholar

    [29]

    Zhang B, Chu X L, Li Q 2002 J. Opt. Soc. Am. A 19 1370Google Scholar

    [30]

    Ji X L, Zhang T R, Jia X H 2009 J. Opt. A: Pure Appl. Opt. 11 105705Google Scholar

    [31]

    Zhou G Q 2009 J. Opt. A: Pure Appl. Opt. 12 015701Google Scholar

    [32]

    Zhang Y J, Ding B F, Suyama T 2010 Phys. Rev. A 81 109Google Scholar

    [33]

    Zhao C L, Cai Y J 2011 Opt. Lett. 36 2251Google Scholar

  • [1] 昌成成, 蒲继雄, 陈子阳, 陈旭东. 非均匀关联随机电磁光束的产生. 物理学报, 2017, 66(5): 054212. doi: 10.7498/aps.66.054212
    [2] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [3] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [4] 陈顺意, 丁攀峰, 蒲继雄. 部分相干径向偏振光束传输中相干性研究. 物理学报, 2015, 64(13): 134201. doi: 10.7498/aps.64.134201
    [5] 陆云清, 呼斯楞, 陆懿, 许吉, 王瑾. 径向偏振光下的长焦、紧聚焦表面等离子体激元透镜. 物理学报, 2015, 64(9): 097301. doi: 10.7498/aps.64.097301
    [6] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [7] 范丹丹, 吴逢铁, 程治明, 朱健强. 非相干光源无衍射光的自重建. 物理学报, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [8] 郑建洲, 于清旭, 关寿华, 董斌, 曹晓君, 芦永军, 吴云峰. 利用部分相干光和同心角偏差透镜列阵实现二维靶面均匀辐照. 物理学报, 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [9] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [10] 李湘衡, 张冰志, 佘卫龙. 相干光伏空间孤子非对称碰撞研究. 物理学报, 2011, 60(7): 074216. doi: 10.7498/aps.60.074216
    [11] 崔虎, 张冰志, 佘卫龙. 非相干耦合的亮和暗光伏空间孤子对的偏转特性. 物理学报, 2010, 59(3): 1823-1830. doi: 10.7498/aps.59.1823
    [12] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [13] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计. 物理学报, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [14] 张 宇, 侯春风, 孙秀冬. 双光子光折变介质中的非相干耦合空间孤子对. 物理学报, 2007, 56(6): 3261-3265. doi: 10.7498/aps.56.3261
    [15] 刘普生, 吕百达. 拉盖尔-高斯模叠加而成的部分相干光的相干涡旋. 物理学报, 2007, 56(5): 2623-2628. doi: 10.7498/aps.56.2623
    [16] 黄春福, 郭 儒, 刘思敏. 多个部分非相干光孤子的相互作用. 物理学报, 2007, 56(2): 908-915. doi: 10.7498/aps.56.908
    [17] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响. 物理学报, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [18] 滕树云, 程传福, 刘 曼, 刘立人, 徐至展. 菲涅耳衍射区和夫琅和费衍射区的动态部分相干光散斑场特性. 物理学报, 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
    [19] 王晓生, 佘卫龙. 部分空间非相干光光伏空间孤子. 物理学报, 2002, 51(3): 573-577. doi: 10.7498/aps.51.573
    [20] 张瑞华, 米辛, 周海天, 姜谦, 叶佩弦. 非相干光时延四波混频的多能级理论——非均匀加宽情形. 物理学报, 1991, 40(3): 414-423. doi: 10.7498/aps.40.414
计量
  • 文章访问数:  7914
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-01-17
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回