搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竞争型非线性介质中艾里-高斯光束交互作用的调控

陈卫军 宋德 李野 王新 秦旭磊 刘春阳

引用本文:
Citation:

竞争型非线性介质中艾里-高斯光束交互作用的调控

陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳

Control on interaction of Airy-Gaussian beams in competing nonlinear medium

Chen Wei-Jun, Song De, Li Ye, Wang Xin, Qin Xu-Lei, Liu Chun-Yang
PDF
HTML
导出引用
  • 基于分步傅里叶法研究了艾里-高斯光束在三次聚焦和五次散焦竞争型非线性介质中交互作用的调控. 结果表明: 当入射角度为零时, 同相位艾里-高斯光束相互吸引, 五次散焦非线性强度较弱时, 可形成周期逐渐缩短的呼吸孤子或强度不变的孤子. 五次散焦非线性强度较强时, 呼吸孤子的平均宽度变大甚至出现光束分叉现象, 形成孤子对. 反相位艾里-高斯光束相互排斥, 排斥力随五次散焦非线性强度单调递增. 当入射角度不为零时, 通过控制光束入射角度的正负和初始间距. 同相位和反相位艾里-高斯光束交互作用时可以同时表现出相互吸引和排斥的现象.
    An investigation of control on the interaction of Airy-Gaussian beams (AiGBs) in cubic focusing and quintic defocusing competing nonlinear medium is performed by the split-step Fourier transform method. When the initial launch angle v is zero, two in-phase AiGBs attract each other and the breathing soliton with decaying period or soliton with invariant intensity can form in the case of weaker quintic defocusing nonlinearity. However, the interaction between two in-phase AiGBs under stronger quintic defocusing causes the average width of the breathing soliton to increase and even the beam bifurcation to occur, leading to the generation of soliton pairs. For the out-of-phase case, they repel each other, and the repulsive force increases monotonically with the increase of the quintic defocusing nonlinearity. When the initial launch angle for each of AiGBs is not zero, mutual attraction and repulsion can be exhibited during their interactions by adjusting the sign of v and the interval d. For the in-phase case, if v < 0 and d < 0 or v > 0 and d > 0, there are strong repulsive force and weak attraction between the two AiGBs, resulting in the formation of soliton pairs, and with the decrease of the interval, the attraction becomes greater. When the interval is small enough, the overlapping of the light field can make the nonlinear effect identical to the diffraction effect, the attraction between the two AiGBs increases, while the repulsion force is almost zero, and then a single breathing soliton can be generated in the center of the two AiGBs. If v < 0 and d > 0 (big enough) or v > 0 and d < 0, the constructive interference between two AiGBs causes the autofocusing beams first to be generated, then to repel each other, and the soliton pairs can form. For the out-of-phase case, if v < 0 and d < 0 or v > 0 and d > 0, the repulsion between the two AiGBs becomes bigger, and the repulsion increases with |v| monotonically. If v < 0 and d > 0 or v > 0 and d < 0, the elastic collision between the two AiGBs shows the phenomenon: first attracting and then repelling mutually. When both v and d are small enough, soliton pairs cannot form due to the unbalance between the strong diffraction effect and weaker nonlinear effect induced by the destructive interference.
      通信作者: 宋德, songde_cust@163.com
    • 基金项目: 国家自然科学基金(批准号: 51602028, 11805072, 11874091)、吉林省科技厅重点科技攻关项目(批准号: 2018020103GX)、长春市科技局地院合作专项(批准号: 17DY029)和长春理工大学青年科学基金(批准号: XQNJJ-2017-04)资助的课题.
      Corresponding author: Song De, songde_cust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602028, 11805072, 11874091), the Key Program of Science and Technology of Jilin Province, China (Grant No. 2018020103GX), the Cooperation Project of Changchun Science and Technology Bureau, China (Grant No. 17DY029), and the Youth Science Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2017-04).
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [4]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675Google Scholar

    [5]

    任志君, 吴琼, 周卫东, 吴根柱, 施逸乐 2012 物理学报 61 174207Google Scholar

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207Google Scholar

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901Google Scholar

    [7]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101Google Scholar

    [9]

    Wiersma N, Marsal N, Sciamanna M, Wolfersberger D 2014 Opt. Lett. 39 5997Google Scholar

    [10]

    Liang Y, Hu Y, Song D, Lou C, Zhang X, Chen Z, Xu J 2015 Opt. Lett. 40 5686Google Scholar

    [11]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258Google Scholar

    [12]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648Google Scholar

    [13]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111Google Scholar

    [14]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [15]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [16]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901Google Scholar

    [17]

    Fattal Y, Rudnick A, Marom D M 2011 Opt. Express 19 17298Google Scholar

    [18]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842Google Scholar

    [19]

    Hu Y, Sun Z, Bongiovanni D, Song D, Lou C, Xu J, Morandotti R 2012 Opt. Lett. 37 3201Google Scholar

    [20]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585Google Scholar

    [21]

    Zhang L F, Huang P W, Conti C, Wang Z T, Hu Y H, Lei D J, Li Y, Fan D Y 2017 Opt. Express 25 1856Google Scholar

    [22]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814Google Scholar

    [23]

    Zhou G, Chen R, Ru G 2014 Laser Phys. Lett. 11 105001Google Scholar

    [24]

    Xiao F, Li B, Wang M, Zhu W, Zhang P, Liu S, Zhao J 2014 Opt. Express 22 22763Google Scholar

    [25]

    Zhang M, Huo G, Zhong H, Hui Z 2017 Opt. Express 25 22104Google Scholar

    [26]

    Wu Z K, Guo H, Wang W, Gu Y Z 2018 Front. Phys. 13 134201Google Scholar

    [27]

    Chen W, Lu K, Yang J, Liu C, Wang X, Mu Y 2018 Appl. Phys. B 124 217

    [28]

    Zhan K, Yang Z, Jiao R, Liu B, Han G, Xu X, Jiao Z 2019 Opt. Commun. 432 49Google Scholar

    [29]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719Google Scholar

    [30]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504Google Scholar

    [31]

    Peng Y, Peng X, Chen B, Zhou M, Chen C, Deng D 2016 Opt. Commun. 359 116Google Scholar

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102Google Scholar

    [33]

    Deng D M 2011 Eur. Phys. J. D 65 553Google Scholar

    [34]

    Deng D, Li H 2012 Appl. Phys. B 106 677Google Scholar

    [35]

    Zhang X 2016 Opt. Commun. 367 364Google Scholar

    [36]

    Shi Z, Xue J, Zhu X, Xiang Y, Li H 2017 Phys. Rev. E 95 042209Google Scholar

    [37]

    Jiang Q, Su Y, Ma Z, Zheng W, Li Y, Nie H 2018 J. Mod. Opt. 65 2243Google Scholar

    [38]

    陈卫军, 卢克清, 惠娟利, 张宝菊 2016 物理学报 65 244202Google Scholar

    Chen W J, Lu K Q, Hui J L, Zhang B J 2016 Acta Phys. Sin. 65 244202Google Scholar

    [39]

    Chen W, Ju Y, Liu C, Wang L, Lu K 2018 Chin. Phys. B 27 114216Google Scholar

    [40]

    Dimitrevski K, Reimhult E, Svensson E, Öhgren A, Anderson D, Berntson A, Quiroga-Teixeiro M L 1998 Phys. Lett. A 248 369Google Scholar

    [41]

    Reyna A S, Malomed B A, de Araújo C B 2015 Phys. Rev. A 92 033810Google Scholar

    [42]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2008 Opt. Lett. 33 207Google Scholar

    [43]

    Zhang Y, Belić M, Sun J, Zheng H, Wu Z, Chen H, Zhang Y 2015 Rom. Rep. Phys. 67 1099

    [44]

    Deng F, Yu W, Deng D 2016 Laser Phys. Lett. 13 116202Google Scholar

  • 图 1  (a) g取不同值时AiGBs的光强分布; (b), (c), (d)入射角度v取不同值时自由空间中AiGB的演化

    Fig. 1.  (a) Intensity distributions of AiGBs with g = 0.01 and 1; (b), (c), (d) evolution of AiGB in free space with different initial launch angle v.

    图 2  五次散焦非线性强度取不同值时同相位AiGBs的交互作用(入射角度v = 0)

    Fig. 2.  Interactions of in-phase AiGBs with different strength of the quintic defocusing nonlinearity. The initial launch angle v = 0.

    图 3  五次散焦非线性强度取不同值时反相位AiGBs的交互作用(入射角度v = 0)

    Fig. 3.  Interactions of out-of-phase AiGBs with different strength of the quintic defocusing nonlinearity. The initial launch angle v = 0

    图 4  不同入射角度条件下同相位AiGBs的交互作用

    Fig. 4.  Interactions of in-phase AiGBs with different initial launch angles.

    图 5  不同入射角度条件下反相位AiGBs的交互作用

    Fig. 5.  Interactions of out-of-phase AiGBs with different initial launch angles.

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [4]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675Google Scholar

    [5]

    任志君, 吴琼, 周卫东, 吴根柱, 施逸乐 2012 物理学报 61 174207Google Scholar

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207Google Scholar

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901Google Scholar

    [7]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229Google Scholar

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101Google Scholar

    [9]

    Wiersma N, Marsal N, Sciamanna M, Wolfersberger D 2014 Opt. Lett. 39 5997Google Scholar

    [10]

    Liang Y, Hu Y, Song D, Lou C, Zhang X, Chen Z, Xu J 2015 Opt. Lett. 40 5686Google Scholar

    [11]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258Google Scholar

    [12]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648Google Scholar

    [13]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111Google Scholar

    [14]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [15]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [16]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901Google Scholar

    [17]

    Fattal Y, Rudnick A, Marom D M 2011 Opt. Express 19 17298Google Scholar

    [18]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842Google Scholar

    [19]

    Hu Y, Sun Z, Bongiovanni D, Song D, Lou C, Xu J, Morandotti R 2012 Opt. Lett. 37 3201Google Scholar

    [20]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585Google Scholar

    [21]

    Zhang L F, Huang P W, Conti C, Wang Z T, Hu Y H, Lei D J, Li Y, Fan D Y 2017 Opt. Express 25 1856Google Scholar

    [22]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814Google Scholar

    [23]

    Zhou G, Chen R, Ru G 2014 Laser Phys. Lett. 11 105001Google Scholar

    [24]

    Xiao F, Li B, Wang M, Zhu W, Zhang P, Liu S, Zhao J 2014 Opt. Express 22 22763Google Scholar

    [25]

    Zhang M, Huo G, Zhong H, Hui Z 2017 Opt. Express 25 22104Google Scholar

    [26]

    Wu Z K, Guo H, Wang W, Gu Y Z 2018 Front. Phys. 13 134201Google Scholar

    [27]

    Chen W, Lu K, Yang J, Liu C, Wang X, Mu Y 2018 Appl. Phys. B 124 217

    [28]

    Zhan K, Yang Z, Jiao R, Liu B, Han G, Xu X, Jiao Z 2019 Opt. Commun. 432 49Google Scholar

    [29]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719Google Scholar

    [30]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504Google Scholar

    [31]

    Peng Y, Peng X, Chen B, Zhou M, Chen C, Deng D 2016 Opt. Commun. 359 116Google Scholar

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102Google Scholar

    [33]

    Deng D M 2011 Eur. Phys. J. D 65 553Google Scholar

    [34]

    Deng D, Li H 2012 Appl. Phys. B 106 677Google Scholar

    [35]

    Zhang X 2016 Opt. Commun. 367 364Google Scholar

    [36]

    Shi Z, Xue J, Zhu X, Xiang Y, Li H 2017 Phys. Rev. E 95 042209Google Scholar

    [37]

    Jiang Q, Su Y, Ma Z, Zheng W, Li Y, Nie H 2018 J. Mod. Opt. 65 2243Google Scholar

    [38]

    陈卫军, 卢克清, 惠娟利, 张宝菊 2016 物理学报 65 244202Google Scholar

    Chen W J, Lu K Q, Hui J L, Zhang B J 2016 Acta Phys. Sin. 65 244202Google Scholar

    [39]

    Chen W, Ju Y, Liu C, Wang L, Lu K 2018 Chin. Phys. B 27 114216Google Scholar

    [40]

    Dimitrevski K, Reimhult E, Svensson E, Öhgren A, Anderson D, Berntson A, Quiroga-Teixeiro M L 1998 Phys. Lett. A 248 369Google Scholar

    [41]

    Reyna A S, Malomed B A, de Araújo C B 2015 Phys. Rev. A 92 033810Google Scholar

    [42]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2008 Opt. Lett. 33 207Google Scholar

    [43]

    Zhang Y, Belić M, Sun J, Zheng H, Wu Z, Chen H, Zhang Y 2015 Rom. Rep. Phys. 67 1099

    [44]

    Deng F, Yu W, Deng D 2016 Laser Phys. Lett. 13 116202Google Scholar

  • [1] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针. 物理学报, 2024, 73(17): 174203. doi: 10.7498/aps.73.20240878
    [2] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用. 物理学报, 2020, 69(2): 024204. doi: 10.7498/aps.69.20191272
    [3] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [4] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] 杜闯, 贾大功, 张红霞, 刘铁根, 张以谟. 环形光束锥形衍射出射光场偏振特性及光场调控. 物理学报, 2017, 66(12): 124202. doi: 10.7498/aps.66.124202
    [6] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [7] 樊丁, 黄自成, 黄健康, 王新鑫, 黄勇. 考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析. 物理学报, 2015, 64(10): 108102. doi: 10.7498/aps.64.108102
    [8] 何艳生, 符师桦, 张青川. 不同加载条件下位错和溶质原子交互作用的数值模拟. 物理学报, 2014, 63(22): 228102. doi: 10.7498/aps.63.228102
    [9] 林敏, 张美丽. 力与耦合系统的交互作用和随机能量共振. 物理学报, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [10] 张霞萍, 刘友文. 强非局域非线性介质中拉盖尔-高斯型光孤子相互作用. 物理学报, 2011, 60(8): 084212. doi: 10.7498/aps.60.084212
    [11] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [12] 尹 鑫, 王继扬. 旋光性与电光效应交互作用及其对旋光晶体电光Q开关的影响. 物理学报, 2004, 53(10): 3565-3570. doi: 10.7498/aps.53.3565
    [13] 唐永林, 李大义, 陈建国, 康 俊. 对数型折射率饱和非线性介质中光孤子高斯型呼吸模式. 物理学报, 1999, 48(7): 1248-1253. doi: 10.7498/aps.48.1248
    [14] 谭启. 从铝合金的应变时效内耗考察位错与点缺陷的交互作用. 物理学报, 1994, 43(10): 1658-1664. doi: 10.7498/aps.43.1658
    [15] 杨光参. q振子光场模型的光与物质相互作用的非线性理论. 物理学报, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [16] 方前锋, 葛庭燧. 与位错和点缺陷的交互作用有关的低温内耗峰. 物理学报, 1993, 42(3): 458-464. doi: 10.7498/aps.42.458
    [17] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象. 物理学报, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [18] 孙宗琦. 几何弯结与点缺陷的弹性交互作用位场. 物理学报, 1992, 41(12): 1980-1986. doi: 10.7498/aps.41.1980
    [19] 孔庆平, 王翔, 周浩, 倪群慧. 蠕变-疲劳交互作用的电子显微学研究. 物理学报, 1986, 35(8): 1091-1094. doi: 10.7498/aps.35.1091
    [20] 孙宗琦. 可动点缺陷对与运动弯结的滞弹性交互作用. 物理学报, 1984, 33(7): 989-998. doi: 10.7498/aps.33.989
计量
  • 文章访问数:  7987
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-08
  • 修回日期:  2019-01-30
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回