搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究

王向贤 白雪琳 庞志远 杨华 祁云平 温晓镭

引用本文:
Citation:

聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究

王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭

Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film

Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei
PDF
HTML
导出引用
  • 金属纳米颗粒与金属薄膜的复合结构由于其局域表面等离子体和传播表面等离子体间的强共振耦合作用, 可作为表面增强拉曼散射(SERS)基底, 显著增强吸附分子的拉曼信号. 本文提出了一种聚甲基丙烯酸甲酯(PMMA)间隔的90 nm金纳米立方体与50 nm金膜复合结构的SERS基底, 通过有限元方法数值模拟, 得到PMMA的最优化厚度为15 nm. 实验制备了PMMA间隔层厚度为14 nm的复合结构, 利用罗丹明6G (R6G)为拉曼探针分子, 633 nm的氦氖激光器作为激发光源, 研究了复合结构和单一金纳米立方体的SERS效应, 发现复合结构可以使探针分子产生比单一结构更强的拉曼信号. 在此基础上, 研究了不同浓度金纳米立方体水溶液条件下复合结构中R6G的拉曼光谱. 结果表明, 当金纳米立方体水溶液浓度为5.625 ${\text μ}{\rm g/mL}$的条件下复合结构中R6G的拉曼信号最强, 且可测量R6G的最低浓度达10–11 mol/L.
    The composite structure of metal nanoparticle and metal film can be used as a surface-enhanced Raman scattering (SERS) substrate to significantly enhance the Raman signal of adsorbed molecules due to the strong coupling between local surface plasmons and propagating surface plasmons. An SERS substrate of the composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate (PMMA) film is proposed. The optimum thickness of PMMA is 15 nm obtained by numerical simulation through using finite element method. The composite structure of PMMA spacer with a thickness of 14 nm is prepared experimentally. Using R6G as the Raman probe molecules and He-Ne laser with a wavelength of 633 nm as an excitation source, the SERS effect of the composite structure and single gold nano-cubes are studied. It is found that the composite structure can make the probe molecules produce a stronger Raman signal than the single structure. Furthermore, the SERS spectra of R6G molecules on the composite structure under the condition of aqueous solution of gold nano-cubes with different concentrations are studied. The results show that when the concentration of gold nano-cubes’ aqueous solution is 5.625 ${\text{μ}}{\rm g/mL}$, the SERS signal of the R6G molecules on the composite structure is strongest. The lowest concentration of R6G molecules which can be detected is about 10–11 mol/L.
      通信作者: 王向贤, wangxx869@126.com
    • 基金项目: 国家自然科学基金(批准号: 61505074)和兰州理工大学红柳一流学科建设计划资助的课题.
      Corresponding author: Wang Xiang-Xian, wangxx869@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505074) and the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology, China.
    [1]

    Liang C P, Niu G, Chen X F, Zhou Z G, Yi Z, Ye X, Duan T, Yi Y, Xiao S Y 2019 Opt. Commun. 436 57Google Scholar

    [2]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [3]

    Liu C, Su W Q, Liu Q, Lu X L, Wang F M, Sun T, Paul K C 2018 Opt. Express 26 9039Google Scholar

    [4]

    Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G 2015 J. Mater. Chem. C 3 4222Google Scholar

    [5]

    Wang X X, Wu X X, Chen Y Z, Bai X L, Pang Z Y, Yang H, Qi Y P, Wen X L 2018 AIP Adv. 8 105029Google Scholar

    [6]

    Yan Y X, Hua Y, Zhao X X, Li R S, Wang X X 2018 Mater. Res. Bull. 105 286Google Scholar

    [7]

    Zheng C X, Yang H 2018 J. Mater. Sci.: Mater. Electron. 29 9291Google Scholar

    [8]

    Zhao X X, Hua Y, Li S H, Cui Z M, Zhang C R 2018 Mater. Res. Bull. 107 180Google Scholar

    [9]

    Di L J, Yang H, Xian T, Chen X J 2018 Micromachines 9 613Google Scholar

    [10]

    Cen C L, Chen J J, Liang C P, Huang J, Chen X F, Tang Y J, Yi Z, Xu X B, Yi Y G, Xiao S Y 2018 Physica E 103 93Google Scholar

    [11]

    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G 2015 ACS Appl. Mater. Inter. 7 4962Google Scholar

    [12]

    Yang L, Wang J C, Yang L Z, Hu Z D, Wu X J, Zheng G G 2018 Sci. Rep. 8 2560Google Scholar

    [13]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [14]

    Zhang X W, Qi Y P, Zhou P Y, Gong H H, Hu B B, Yan C M 2018 Photon. Sens. 8 367Google Scholar

    [15]

    Chen J, Zhang T, Tang C J, Mao P, Liu Y J, Yu Y, Liu Z Q 2016 IEEE Photon. Tech. Lett. 28 1529Google Scholar

    [16]

    Chen J, Tang C J, Mao P, Peng C, Gao D P, Yu Y, Wang Q G, Zhang L B 2016 IEEE Photon. J. 8 4800107Google Scholar

    [17]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

    [18]

    Wang X X, Pang Z Y , Tong H , Wu X X, Bai X L, Yang H, Wen X L, Qi Y P 2019 Results Phys. 12 732Google Scholar

    [19]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quant. Electron 50 335Google Scholar

    [20]

    Wang X X, Zhang D G, Chen Y K, Zhu L F, Yu W H, Wang P, Yao P J, Ming H, Wu W X, Zhang Q J 2013 Appl. Phys. Lett. 102 031103Google Scholar

    [21]

    Du H M, Zhang L P, Li D A 2018 Plasma Sci. Technol. 20 115001Google Scholar

    [22]

    Li D A, Zhang L P, Du H M 2018 Plasma Sci. Technol.Google Scholar

    [23]

    Shao H Y, Chen C, Wang J C, Pan L, Sang T 2017 J. Phys. D 50 384001Google Scholar

    [24]

    Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L, Gu G 2015 Nanotechnology 26 185702Google Scholar

    [25]

    Yu M D, Huang Z P, Liu Z Q, Chen J, Liu Y, Tang L, Liu G Q 2018 Sensor. Actuat. B: Chem. 262 845Google Scholar

    [26]

    李志远, 李家方 2011 科学通报 56 2631Google Scholar

    Li Z Y, Li J F 2011 Chin. Sci. Bull. 56 2631Google Scholar

    [27]

    Yi M F, Zhang D G, Wang P, Jiao X J, Blair S, Wen X L, Fu Q, Lu Y H, Ming H 2011 Plasmonics 6 515Google Scholar

    [28]

    Gonçalves R M 2014 J. Phys. D: Appl. Phys. 47 213001Google Scholar

    [29]

    Yan Z D, Du W, Tu L L, Gu P, Huang Z, Zhan P, Liuc F X, Wang Z L 2015 J. Raman Spectrosc. 46 795Google Scholar

    [30]

    Su X D, Ma X B, Wang J, Tu Z Z, Han Y J, Teng Z G 2018 J. Mol. Struct. 1171 202Google Scholar

    [31]

    Li R F, Shi G C, Wang Y H, Wang M L, Zhu Y Y, Sun X, Xu H J, Chang C X 2018 Optik 172 49Google Scholar

    [32]

    Kume T, Hayashiba S, Yamamotobo K 1996 Jpn. J. Appl. Phys. 35 171Google Scholar

    [33]

    Leveque G, Martin O J F 2006 Opt. Lett. 31 2750Google Scholar

    [34]

    Zhou L, Li M Y, Tang L H, He J J 2016 J. Phys.: Conference Series 680 012003Google Scholar

    [35]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [36]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [37]

    Wang X X, Tong H, Pang Z Y, Zhu J K, Wu X X, Yang H, Qi Y P 2019 Opt. Quant. Electron. 51 38Google Scholar

    [38]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

  • 图 1  (a)金纳米立方体的SEM图; (b)金纳米立方体的吸收谱

    Fig. 1.  (a) SEM image of gold nano-cube; (b) absorption spectrum of gold nano-cube.

    图 2  10−4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下玻璃基片上的SERS光谱

    Fig. 2.  SERS spectra of R6G molecules on the glass substrate in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10−4 mol/L.

    图 3  (a)复合结构中最大电场增强因子与PMMA厚度的关系; (b) 15 nm PMMA厚度下复合结构中的电场分布

    Fig. 3.  (a) Relationship between maximum electric field enhancement factor and the thickness of PMMA in composite structure; (b) electric field distribution of composite structure with a 15-nm-thick PMMA spacer.

    图 4  10−4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下复合结构中的SERS光谱

    Fig. 4.  SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10−4 mol/L.

    图 5  10−4 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下玻璃基片和复合结构的SERS光谱

    Fig. 5.  SERS spectra of R6G molecules on the glass substrate and composite structure in the condition of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text {\rm μg/mL}}$ and R6G with the concentration of 10−4 mol/L.

    图 6  5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下, 复合结构的SERS光谱 (a)不同R6G浓度; (b) 10−11 mol/L的R6G浓度(1 M = 1 mol/L)

    Fig. 6.  SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text{\rm μg/mL}} \!\! :$(a) R6G with different concentrations of 10–6, 10−8, 10−10, 10–11 mol/L; (b) R6G with the concentration of 10−11 mol/L.

  • [1]

    Liang C P, Niu G, Chen X F, Zhou Z G, Yi Z, Ye X, Duan T, Yi Y, Xiao S Y 2019 Opt. Commun. 436 57Google Scholar

    [2]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [3]

    Liu C, Su W Q, Liu Q, Lu X L, Wang F M, Sun T, Paul K C 2018 Opt. Express 26 9039Google Scholar

    [4]

    Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G 2015 J. Mater. Chem. C 3 4222Google Scholar

    [5]

    Wang X X, Wu X X, Chen Y Z, Bai X L, Pang Z Y, Yang H, Qi Y P, Wen X L 2018 AIP Adv. 8 105029Google Scholar

    [6]

    Yan Y X, Hua Y, Zhao X X, Li R S, Wang X X 2018 Mater. Res. Bull. 105 286Google Scholar

    [7]

    Zheng C X, Yang H 2018 J. Mater. Sci.: Mater. Electron. 29 9291Google Scholar

    [8]

    Zhao X X, Hua Y, Li S H, Cui Z M, Zhang C R 2018 Mater. Res. Bull. 107 180Google Scholar

    [9]

    Di L J, Yang H, Xian T, Chen X J 2018 Micromachines 9 613Google Scholar

    [10]

    Cen C L, Chen J J, Liang C P, Huang J, Chen X F, Tang Y J, Yi Z, Xu X B, Yi Y G, Xiao S Y 2018 Physica E 103 93Google Scholar

    [11]

    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G 2015 ACS Appl. Mater. Inter. 7 4962Google Scholar

    [12]

    Yang L, Wang J C, Yang L Z, Hu Z D, Wu X J, Zheng G G 2018 Sci. Rep. 8 2560Google Scholar

    [13]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [14]

    Zhang X W, Qi Y P, Zhou P Y, Gong H H, Hu B B, Yan C M 2018 Photon. Sens. 8 367Google Scholar

    [15]

    Chen J, Zhang T, Tang C J, Mao P, Liu Y J, Yu Y, Liu Z Q 2016 IEEE Photon. Tech. Lett. 28 1529Google Scholar

    [16]

    Chen J, Tang C J, Mao P, Peng C, Gao D P, Yu Y, Wang Q G, Zhang L B 2016 IEEE Photon. J. 8 4800107Google Scholar

    [17]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

    [18]

    Wang X X, Pang Z Y , Tong H , Wu X X, Bai X L, Yang H, Wen X L, Qi Y P 2019 Results Phys. 12 732Google Scholar

    [19]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quant. Electron 50 335Google Scholar

    [20]

    Wang X X, Zhang D G, Chen Y K, Zhu L F, Yu W H, Wang P, Yao P J, Ming H, Wu W X, Zhang Q J 2013 Appl. Phys. Lett. 102 031103Google Scholar

    [21]

    Du H M, Zhang L P, Li D A 2018 Plasma Sci. Technol. 20 115001Google Scholar

    [22]

    Li D A, Zhang L P, Du H M 2018 Plasma Sci. Technol.Google Scholar

    [23]

    Shao H Y, Chen C, Wang J C, Pan L, Sang T 2017 J. Phys. D 50 384001Google Scholar

    [24]

    Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L, Gu G 2015 Nanotechnology 26 185702Google Scholar

    [25]

    Yu M D, Huang Z P, Liu Z Q, Chen J, Liu Y, Tang L, Liu G Q 2018 Sensor. Actuat. B: Chem. 262 845Google Scholar

    [26]

    李志远, 李家方 2011 科学通报 56 2631Google Scholar

    Li Z Y, Li J F 2011 Chin. Sci. Bull. 56 2631Google Scholar

    [27]

    Yi M F, Zhang D G, Wang P, Jiao X J, Blair S, Wen X L, Fu Q, Lu Y H, Ming H 2011 Plasmonics 6 515Google Scholar

    [28]

    Gonçalves R M 2014 J. Phys. D: Appl. Phys. 47 213001Google Scholar

    [29]

    Yan Z D, Du W, Tu L L, Gu P, Huang Z, Zhan P, Liuc F X, Wang Z L 2015 J. Raman Spectrosc. 46 795Google Scholar

    [30]

    Su X D, Ma X B, Wang J, Tu Z Z, Han Y J, Teng Z G 2018 J. Mol. Struct. 1171 202Google Scholar

    [31]

    Li R F, Shi G C, Wang Y H, Wang M L, Zhu Y Y, Sun X, Xu H J, Chang C X 2018 Optik 172 49Google Scholar

    [32]

    Kume T, Hayashiba S, Yamamotobo K 1996 Jpn. J. Appl. Phys. 35 171Google Scholar

    [33]

    Leveque G, Martin O J F 2006 Opt. Lett. 31 2750Google Scholar

    [34]

    Zhou L, Li M Y, Tang L H, He J J 2016 J. Phys.: Conference Series 680 012003Google Scholar

    [35]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [36]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [37]

    Wang X X, Tong H, Pang Z Y, Zhu J K, Wu X X, Yang H, Qi Y P 2019 Opt. Quant. Electron. 51 38Google Scholar

    [38]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [5] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [6] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [9] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [11] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [12] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [13] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [14] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [15] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [16] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  9717
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-01-18
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回