搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学扫描全息密码术的多图像并行加密

王仁德 张亚萍 祝旭锋 王帆 李重光 张永安 许蔚

引用本文:
Citation:

基于光学扫描全息密码术的多图像并行加密

王仁德, 张亚萍, 祝旭锋, 王帆, 李重光, 张永安, 许蔚

Multi-section images parallel encryption based on optical scanning holographic cryptography technology

Wang Ren-De, Zhang Ya-Ping, Zhu Xu-Feng, Wang Fan, Li Chong-Guang, Zhang Yong-An, Xu Wei
PDF
HTML
导出引用
  • 对光学扫描全息术中的双光瞳做出改进, 提出对多图像并行加密和任意层图像再现的新方法. 将其中一个光瞳设置成环形光瞳, 另一个光瞳处插入随机相位板, 干涉形成环形随机相位板, 实现对多层图像的快速扫描和并行加密, 扫描信号通过计算机合成为加密全息图, 在数字全息再现的过程中进行解密, 实现对任意层图像的精准重建. 该方法快捷高效、安全可靠, 抗噪声能力强. 利用相关系数评估了该方法的加密效果, 并通过仿真实验验证了该方法的有效性和安全性.
    In this paper, the function of parallel encrypting multiple images and reproducing arbitrary layers of images is realized by improving the double pupil function in optical scanning holography. In an optical scanning holography (OSH) system, a dual-pupil heterodyne incoherent image processing technique is used to record holographic images. By adjusting the two pupil functions in the optical system, the interference fringes can be modified to achieve different imaging effects. In this paper, the ring pupil and random phase plate are used to act as two pupil functions to interfere to form a ring random phase plate, and thus realizing the fast scanning of multi-layer images. Then the multi-layer images can be quickly encrypted by one imaging technique. The scanned signals are quickly collected by photoelectric detectors, and they synthesize encrypted holograms by computer. By using the digital holography to decrypt the holograms, the precise reproduction of any layer image can be achieved. The OSH system with random phase pupil is strongly dependent on the longitudinal position of the system in digital reconstruction. The defocusing noise can be converted into random noise and the effect of defocusing layer on imaging can be effectively suppressed. However, in practice, it is necessary to average multiple images to achieve better imaging effect, and the accuracy of random phase plate is required. In this paper, most of the random noise can be filtered with the aid of ring pupil, and all the information about multi-layer graphics can be recorded and reconstructed by one scan. In the process of reconstruction, the influence of defocusing image can be effectively eliminated, and the decryption of any layer image can be realized. This method collects encrypted image by photoelectric detector, and does not need complex algorithm reconstruction nor phase iteration, which greatly reduces the time expended in the encryption process. In the process of encryption, the key space of the system is increased, and the encrypted image obtained has high security. In this paper, correlation coefficient is used to evaluate the encryption effect of this method, and the effectiveness and security of this method are verified by simulation experiments. For cutting resistance, when 75% of the information is lost, the correlation coefficient can still reach more than 0.5. For the sensitivity of information, the integrity of decrypted image will be seriously damaged when the wavelength and distance shift very little. For the anti-noise ability, under the influence of Gauss noise and salt and pepper noise, the correlation coefficient and image recognition degree are high. This method is very time-saving, and the result of encryption has high security, high sensitivity, strong ability to resist clipping and noise.
      通信作者: 张亚萍, yaping.zhang@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 61565010, 11762009, 61865007)和云南省自然科学基金(批准号: 2018FB101)资助的课题.
      Corresponding author: Zhang Ya-Ping, yaping.zhang@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61565010, 11762009, 61865007) and the Natural Science Foundation of Yunnan Province, China (Grant No. 2018FB101).
    [1]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [2]

    Tsang P, Cheung K W K, Poon T C 2013 Chin. Opt. Lett. 11 27

    [3]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [4]

    Zhou N, Wang Y, He H, Gong L, Wu J 2011 Opt. Commun. 284 2789Google Scholar

    [5]

    Alfalou A, Brosseau C 2009 Adv. Opt. Photonics 1 589Google Scholar

    [6]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443Google Scholar

    [7]

    姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平 2016 物理学报 65 214203Google Scholar

    Yao L L, Yuan C J, Qiang J J, Feng S T, Nie S P 2016 Acta Phys. Sin 65 214203Google Scholar

    [8]

    Refregier P, Javidi B 1995 Opt. Lett. 20 67Google Scholar

    [9]

    Takai N, Mifune Y 2002 Appl. Opt. 41 865Google Scholar

    [10]

    Matoba O, Javidi B 2004 Appl. Opt. 43 2915Google Scholar

    [11]

    Wu J H, Luo X Z, Zhou N R 2013 Opt. Laser Technol. 45 571Google Scholar

    [12]

    He M Z, Cai L Z, Liu Q, Wang X C, Meng X F 2005 Opt. Commun. 247 29Google Scholar

    [13]

    Situ G, Zhang J 2005 Opt. Lett. 30 1306Google Scholar

    [14]

    Qin Y, Gong Q 2013 Appl. Opt. 52 3987Google Scholar

    [15]

    Tajahuerce E, Matoba O, Verrall S C, Javidi B 2000 Appl. Opt. 39 2313Google Scholar

    [16]

    Carnicer A, Montes-Usategui M, Arcos S, Juvells I 2005 Opt. Lett. 30 1644Google Scholar

    [17]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [18]

    Poon T C, Korpel A 1979 Opt. Lett. 4 317Google Scholar

    [19]

    Poon T C 2009 J. Opt. Soc. Korea 13 406Google Scholar

    [20]

    Poon T C 2007 Optical Scanning Holography with MATLAB (Verlag: Springer) pp66−92

    [21]

    Poon T C 1985 J. Opt. Soc. Am. A 2 521Google Scholar

    [22]

    Pan Y J, Jia W, Yu J J, Dobson K, Zhou C H, Wang Y T, Poon T C 2014 Opt. Lett 39 4176Google Scholar

    [23]

    Poon T C, Kim T, Doh K 2003 Appl. Opt 42 6496Google Scholar

    [24]

    Zhou X, Dobson K, Shinoda Y, Poon T C 2010 Opt. Lett 35 2934Google Scholar

    [25]

    王仁德, 张亚萍, 王帆, 祝旭锋, 李重光, 张永安, 许蔚 2019 中国激光 46 0109001

    Wang R D, Zhang Y P, Wang F, Zhu X F, Li C G, Zhang Y A, Xu W 2019 Chin. J. Laser 46 0109001

    [26]

    Wang B, Zhang Y 2009 Opt. Commun. 282 3439Google Scholar

    [27]

    Chen W, Chen, X 2011 J. Opt. 13 115401Google Scholar

  • 图 1  OSH系统原理图

    Fig. 1.  Schematic of the OSH system.

    图 2  加密图像 (a) 切片1, z1 = 10 mm; (b) 切片2, z2 = 12 mm; (c) 切片3, z1 = 15 mm; (d)多切片的排列方式

    Fig. 2.  Encrypted image: (a) Section image 1, z1 = 10 mm; (b) section image 2, z2 = 12 mm; (c) section image 3, z3 = 15 mm; (d) the arrangement of multi-section images.

    图 3  环形光瞳和不同ε的归一化强度响应和强度相应曲线 (a) 环形光瞳(ε = 0.5)的透过率分布图; (b) 归一化强度响应曲线;(c) 强度响应曲线

    Fig. 3.  Annular pupil and the intensity response curves of different ε: (a) The transmission distribution diagram of annular pupil with ε = 0.5; (b) normalized intensity response curve; (c) intensity response curve.

    图 4  加密结果 (a) 余弦加密全息图; (b) 正弦加密全息图

    Fig. 4.  Encryption results: (a) Encrypted cosine-hologram; (b) encrypted sine-hologram.

    图 5  灰度直方图 (a) 余弦加密全息图的灰度直方图; (b) 正弦加密全息图的灰度直方图

    Fig. 5.  Gray histogram: (a) Gray histogram of encrypted cosine-hologram; (b) gray histogram of encrypted sine-hologram.

    图 6  不同切片的解密结果 (a) 切片1; (b) 切片2; (c) 切片3

    Fig. 6.  Decryption results of different sections: (a) Section 1; (b) section 2; (c) section 3.

    图 7  错误解密结果 (a) 相关系数Cc随δd变化的曲线图; (b) 和 (c) δd = 0.01和0.1 mm时的解密结果; (d) 相关系数Cc随δλ变化的曲线图; (e) 和 (f) δλ = 0.1和1 nm时的解密结果

    Fig. 7.  Incorrect decryption results: (a) The Cc curve of varies with δd; (b) and (c) decryption result of δd = 0.1 and 0.1 mm, respectively; (d) the Cc curve of varies with δλ; (e) and (f) decryption result of δλ = 0.1 and 1 nm, respectively.

    图 8  单幅加密全息图的解密结果 (a) 正弦加密全息图的解密结果; (b) 余弦加密全息图的解密结果

    Fig. 8.  Decryption result of single-encrypted hologram: (a) Decryption result of encrypted sine-hologram; (b) decryption result of encrypted cosine-hologram.

    图 9  抗剪裁性能模拟结果 (a) 和 (b) 信息丢失25%的正余弦加密图像; (c) 信息丢失25%后的解密结果; (d) 和 (e) 信息丢失50%的正余弦加密图像; (f) 信息丢失50%后的解密结果; (g) 和 (h) 信息丢失75%的正余弦加密图像; (i) 信息丢失75%后的解密结果.

    Fig. 9.  Simulation results of anti-shear performance: (a) and (b) The sine- and cosine-holograms with 25% occlusion; (c) decryption result with 25% occlusion; (d) and (e) the sine- and cosine-holograms with 50% occlusion; (f) decryption result with 50% occlusion; (g) and (h) the sine- and cosine-holograms with 75% occlusion; (i) decryption result with 75% occlusion.

    图 10  抗噪声性能模拟结果 (a), (b) 和 (c) 方差为0.02, 0.05和0.08的高斯噪声; (d), (e) 和 (f) 方差为0.02, 0.05和0.08的椒盐噪声

    Fig. 10.  Simulation results of anti-noise performance: (a), (b) and (c) Gaussian noise with variance of 0.02, 0.05 and 0.08; (d), (e) and (f) salt and pepper noise with variance of 0.02, 0.05 and 0.08.

  • [1]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [2]

    Tsang P, Cheung K W K, Poon T C 2013 Chin. Opt. Lett. 11 27

    [3]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [4]

    Zhou N, Wang Y, He H, Gong L, Wu J 2011 Opt. Commun. 284 2789Google Scholar

    [5]

    Alfalou A, Brosseau C 2009 Adv. Opt. Photonics 1 589Google Scholar

    [6]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443Google Scholar

    [7]

    姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平 2016 物理学报 65 214203Google Scholar

    Yao L L, Yuan C J, Qiang J J, Feng S T, Nie S P 2016 Acta Phys. Sin 65 214203Google Scholar

    [8]

    Refregier P, Javidi B 1995 Opt. Lett. 20 67Google Scholar

    [9]

    Takai N, Mifune Y 2002 Appl. Opt. 41 865Google Scholar

    [10]

    Matoba O, Javidi B 2004 Appl. Opt. 43 2915Google Scholar

    [11]

    Wu J H, Luo X Z, Zhou N R 2013 Opt. Laser Technol. 45 571Google Scholar

    [12]

    He M Z, Cai L Z, Liu Q, Wang X C, Meng X F 2005 Opt. Commun. 247 29Google Scholar

    [13]

    Situ G, Zhang J 2005 Opt. Lett. 30 1306Google Scholar

    [14]

    Qin Y, Gong Q 2013 Appl. Opt. 52 3987Google Scholar

    [15]

    Tajahuerce E, Matoba O, Verrall S C, Javidi B 2000 Appl. Opt. 39 2313Google Scholar

    [16]

    Carnicer A, Montes-Usategui M, Arcos S, Juvells I 2005 Opt. Lett. 30 1644Google Scholar

    [17]

    Peng X, Zhang P, Wei H, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [18]

    Poon T C, Korpel A 1979 Opt. Lett. 4 317Google Scholar

    [19]

    Poon T C 2009 J. Opt. Soc. Korea 13 406Google Scholar

    [20]

    Poon T C 2007 Optical Scanning Holography with MATLAB (Verlag: Springer) pp66−92

    [21]

    Poon T C 1985 J. Opt. Soc. Am. A 2 521Google Scholar

    [22]

    Pan Y J, Jia W, Yu J J, Dobson K, Zhou C H, Wang Y T, Poon T C 2014 Opt. Lett 39 4176Google Scholar

    [23]

    Poon T C, Kim T, Doh K 2003 Appl. Opt 42 6496Google Scholar

    [24]

    Zhou X, Dobson K, Shinoda Y, Poon T C 2010 Opt. Lett 35 2934Google Scholar

    [25]

    王仁德, 张亚萍, 王帆, 祝旭锋, 李重光, 张永安, 许蔚 2019 中国激光 46 0109001

    Wang R D, Zhang Y P, Wang F, Zhu X F, Li C G, Zhang Y A, Xu W 2019 Chin. J. Laser 46 0109001

    [26]

    Wang B, Zhang Y 2009 Opt. Commun. 282 3439Google Scholar

    [27]

    Chen W, Chen, X 2011 J. Opt. 13 115401Google Scholar

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 杨冬, 李中文, 田源, 孙帅帅, 田焕芳, 杨槐馨, 李建奇. 用于超快扫描电子显微镜的光发射电子枪及电子光学模拟. 物理学报, 2024, 73(22): 222901. doi: 10.7498/aps.73.20241245
    [3] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [4] 王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影. 基于空间角度复用和双随机相位的多图像光学加密方法. 物理学报, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [5] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [6] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [7] 徐宁, 陈雪莲, 杨庚. 基于改进后多维数据加密系统的多图像光学加密算法的研究. 物理学报, 2013, 62(8): 084202. doi: 10.7498/aps.62.084202
    [8] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [9] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [10] 彭 翔, 汤红乔, 田劲东. 双随机相位编码光学加密系统的唯密文攻击. 物理学报, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [11] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [12] 彭 翔, 张 鹏, 位恒政, 于 斌. 双随机相位加密系统的已知明文攻击. 物理学报, 2006, 55(3): 1130-1136. doi: 10.7498/aps.55.1130
    [13] 杨晓苹, 翟宏琛. 双随机相位加密中相息图的优化设计. 物理学报, 2005, 54(4): 1578-1582. doi: 10.7498/aps.54.1578
    [14] 刘福民, 翟宏琛, 杨晓苹. 基于相息图迭代的随机相位加密. 物理学报, 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
    [15] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
    [16] 臧维平, 田建国, 张光寅. 厚光学非线性介质Z扫描理论分析. 物理学报, 1994, 43(3): 476-482. doi: 10.7498/aps.43.476
    [17] 董碧珍, 顾本源. 实现光学变换的单个全息透镜的有效设计. 物理学报, 1986, 35(2): 235-242. doi: 10.7498/aps.35.235
    [18] 董碧珍, 顾本源. 利用双全息透镜实现光学普遍变换. 物理学报, 1986, 35(3): 413-418. doi: 10.7498/aps.35.413
    [19] 杨国桢. 利用单个全息透镜实现光学变换的理论. 物理学报, 1981, 30(10): 1340-1350. doi: 10.7498/aps.30.1340
    [20] 杨国桢, 顾本源. 用振幅-相位型全息透镜实现光学变换的一般理论. 物理学报, 1981, 30(3): 414-417. doi: 10.7498/aps.30.414
计量
  • 文章访问数:  8416
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-03-05
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回