搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光3D纳米打印温度敏感的微球激光器

侯智善 徐帅 骆杨 李爱武 杨罕

引用本文:
Citation:

激光3D纳米打印温度敏感的微球激光器

侯智善, 徐帅, 骆杨, 李爱武, 杨罕

Femtosecond laser 3D printing temperature sensitive microsphere lasers

Hou Zhi-Shan, Xu Shuai, Luo Yang, Li Ai-Wu, Yang Han
PDF
HTML
导出引用
  • 耳语回廊模式(WGM)微腔具有品质因子高、模式体积小、制作工艺简单多样、同时对周围环境敏感性极高等优点, 已被广泛应用于传感和检测. 然而, 真正的尺寸可控的三维微腔却少有报道. 本文报道了一种有源回音壁模式微球腔, 由商业光刻胶SU-8作为腔体材料, 有机染料罗丹明B作为增益介质. 利用飞秒激光双光子聚合, 可以得到尺寸精确可控的真三维微球激光器. 同时, 由于有机染料的特殊发光机理, 随着环境温度的变化, 染料荧光带飘移, 且会与腔体本征模式形成新的共振激发. 在一定温度变化范围内(20 ℃—35 ℃), 微球激光器的主激射峰波长与温度呈类线性相关. 研究结果对合理设计具有理想性能的小型化激光器具有积极的启发.
    The whispering gallery mode (WGM) microcavity has been widely used for sensing and detection because of its high quality factor, small mode size, simple and diverse manufacturing process, and high sensitivity to the surrounding environment. Microsphere cavityand microdisk cavity are typical whispering gallery mode microcavities. However, the real controllable size of the on-chip three-dimensional microsphere cavity has rarely been reported because it is difficult to prepare by photolithography. At the same time, most of the current microsphere cavity are prepared by hot melting, which have the poor ability to control the size. In this article, we have mainly demonstrated the fabrication of a dye-doped polymer whispering gallery mode microsphere by femtosecond laser two-photon polymerization, which shows good surface smoothness with a fabrication spatial resolution beyond the diffraction limit. The microsphere cavity consists with commercial photoresist SU-8 as the cavity material and Rhodamine B as the gain medium. With the 532 nm pump, the RhB-doped SU-8 can emit fluorescence in the spectral range of 600–700 nm, and thus resonant whispering gallery laser modes in this spectral region can be eventually formed in the microsphere cavities. The microcavity shows excellent lasing performance with a quality factor of ~2000. Due to the special luminescence mechanism of organic dyes, the fluorescence spectrum of the dye drifts with the change of ambient temperature, and it will form a new resonance excitation with the eigenmode of the cavity. Within a certain temperature range (20 ℃-35 ℃), the wavelength of the main lasing peak is linearly related to temperature. The results shows that the organic dye doped micro-resonator has a unique laser mechanism which can be used to construct a new type of microlaser. Moreover, the tunable microsphere laser can be used as a temperature sensor after further optimized. We believe our work will provide a positive inspiration for the rational design of miniaturized lasers with ideal performance.
      通信作者: 李爱武, liaw@jlu.edu.cn ; 杨罕, yanghan@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61590930, 61235003, 61605055, 61590933)资助的课题
      Corresponding author: Li Ai-Wu, liaw@jlu.edu.cn ; Yang Han, yanghan@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61590930, 61235003, 61605055, 61590933)
    [1]

    Capon J, Baets J D, Rycke I D, Smet H D, Doutreloigne J, Calster A V, Vanfleteren J 1992 Sensors Actuat. A: Phys. 32 437Google Scholar

    [2]

    So V C Y, Normandin R, Stegeman G I 1979 Opt. Soc. Am. 69 1166Google Scholar

    [3]

    Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W 2014 Light Sci. Appl. 3 e175Google Scholar

    [4]

    Stegeman G I, Seaton C 1985 J. Appl. Phys. 58 R57Google Scholar

    [5]

    Tien P K 1977 Rev. Mod. Phys. 49 361Google Scholar

    [6]

    Wu Q, Turpin J P,Werner D H 2012 Light Sci. Appl. 1 e38Google Scholar

    [7]

    陈小军, 张自丽, 葛辉良 2012 物理学报 61 174211Google Scholar

    Chen X J, Zhang Z L, Ge H L 2012 Acta Phys. Sin. 61 174211Google Scholar

    [8]

    Muller A, Shih C K, Ahn J, Lu D, Gazula D, Deppe D G 2006 Appl. Phys. Lett. 88 163105Google Scholar

    [9]

    周常河 2009 激光与光电子学进展 62 2

    Zhou C H 2009 LOP 62 2

    [10]

    Rao W, Song Y, Liu M, Jin C 2010 Optik 121 1934Google Scholar

    [11]

    Jugessur A S, Dou J, Aitchison J S 2010 J.Vac. Sci. Technol. B 28 C6O8Google Scholar

    [12]

    Delouise L A, Kou P M, Miller B L 2005 Analytical Chemistry 77 3222Google Scholar

    [13]

    罗娅慧, 李刚, 陈强, 赵建龙 2012 高等学校化学学报 33 2178Google Scholar

    Luo Y H, Li G, Chen Q, Zhao J L 2012 Chem. J. Chinese U. 33 2178Google Scholar

    [14]

    An S J, Yoon J, Lee J, Kwon O D 2006 J. Appl. Phys. 99 66

    [15]

    舒方杰, 杨起帆 2012 激光与光电子学进展 49 48

    Shu F J, Yang Q F 2012 LOP 49 48

    [16]

    Xiao Y F, Zou C L, Xue P, Xiao L, Li Y, Dong C H, Han Z F,Gong Q 2010 Phys. Rev. A 81 1532

    [17]

    Qian S X, Snow J B, Tzeng H M,Chang R K 1986 Science 231 486Google Scholar

    [18]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light Sci. Appl. 4 e282Google Scholar

    [19]

    Zhang B, Wang Z, Brodbeck S, Schneider C, Kamp M, Höfling S, Deng H 2014 Light Sci. Appl. 3 e135Google Scholar

    [20]

    Lekenta K, Król M, Mirek R, Stephan D, Mazur R, Morawiak P, Kula P, Piecek W, Lagoudakis P G, Piętka B 2018 Light Sci. Appl. 4 74

    [21]

    Liu X, Gao J, Gao J, Yang H, Wang X, Wang T, Shen Z, Zhen L, Hai L, Jian Z 2018 Light Sci. Appl. 7 14Google Scholar

    [22]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 797Google Scholar

    [23]

    Nilsson D, Nielsen T, Kristensen A 2004 Rev. Sci. Instrum. 75 4481Google Scholar

    [24]

    Jiang Y, Zhen X, Huang T, Liu Y, Fan G, Xi J, Gao W, Chao G 2018 Adv. Funct. Mater. 28 1707024Google Scholar

    [25]

    Ta V D, Yang S, Wang Y, Gao Y, He T, Chen R, Demir H V, Sun H 2015 Appl. Phys. Lett. 107 839

    [26]

    Wang C, Liu Y, Ji Z, Wang E, Li R, Hui J, Tang Q, Li H, Hu W P 2009 Chem. Mat. 21 2840Google Scholar

    [27]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [28]

    Chen R, Ling B, Sun X W, Sun H D 2011 Adv. Mater. 23 2128Google Scholar

    [29]

    Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Conti G N, Pelli S, Soria S, Righini G C 2010 Laser Photonics Rev. 4 457Google Scholar

    [30]

    Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y 2015 Sci. Rep. 5 8072Google Scholar

    [31]

    Zhan X, Xu H L, Sun H B 2016 Front. Optoelectron. China 9 1Google Scholar

    [32]

    Xu H L, Sun H B 2015 Sci. China Phys. Mech. Astron. 58 1

    [33]

    Xu B B, Xia H, Niu L G, Zhang Y L, Kai S, Chen Q D, Hiroaki M 2010 Small 6 1762Google Scholar

    [34]

    Wong D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun HB 2009 Lab. Chip 9 2391Google Scholar

    [35]

    Xu B B 2013 Lab. Chip 13 1677Google Scholar

    [36]

    Hou Z S, Huang Q L, Zhan Xue Peng, Li A W, Xu H L 2017 RSC. Advances 1 16531

    [37]

    李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201Google Scholar

    Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201Google Scholar

    [38]

    Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao Y S 2016 J. Am. Chem. Soc. 138 1118Google Scholar

    [39]

    赵小兵, 张巍巍, 吴潇杰, 徐如辉, 秦朝菲, 王闽 2018 传感技术学报 4 529Google Scholar

    Zhao X B, Zhang W W, Wu X J, Xu R H, Qin C F, Wang M 2018 Chin. Sens. Acta 4 529Google Scholar

  • 图 1  微球腔飞秒激光光刻流程示意图

    Fig. 1.  Diagram of femtosecond lithography of microsphere cavity.

    图 2  微腔成分分子式及形貌表征

    Fig. 2.  Molecular formula and morphological characterization of microcavity.

    图 3  泵浦探测系统示意图和样品在泵浦光照下的暗场照片

    Fig. 3.  The schematic diagram of the lasing spectrum measurement system and dark field photography.

    图 4  在不同泵浦能量密度下的激射谱和微腔激光器阈值曲线

    Fig. 4.  Lasing spectra under different pump energy densities and the lasing threshold characteristic.

    图 5  微球激光器和RhB染料的发射光谱与温度的关系

    Fig. 5.  Emission spectrum of microsphere laser and RhB vs temperature.

    图 6  (a)主激射波长与器件温度的关系; (b)温度变化时, 器件尺寸不变; 比例尺5 µm

    Fig. 6.  (a) Main resonance peak wavelength vs device temperature; (b) the device size does not change when the temperature changes. Scale bar 5 µm.

  • [1]

    Capon J, Baets J D, Rycke I D, Smet H D, Doutreloigne J, Calster A V, Vanfleteren J 1992 Sensors Actuat. A: Phys. 32 437Google Scholar

    [2]

    So V C Y, Normandin R, Stegeman G I 1979 Opt. Soc. Am. 69 1166Google Scholar

    [3]

    Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W 2014 Light Sci. Appl. 3 e175Google Scholar

    [4]

    Stegeman G I, Seaton C 1985 J. Appl. Phys. 58 R57Google Scholar

    [5]

    Tien P K 1977 Rev. Mod. Phys. 49 361Google Scholar

    [6]

    Wu Q, Turpin J P,Werner D H 2012 Light Sci. Appl. 1 e38Google Scholar

    [7]

    陈小军, 张自丽, 葛辉良 2012 物理学报 61 174211Google Scholar

    Chen X J, Zhang Z L, Ge H L 2012 Acta Phys. Sin. 61 174211Google Scholar

    [8]

    Muller A, Shih C K, Ahn J, Lu D, Gazula D, Deppe D G 2006 Appl. Phys. Lett. 88 163105Google Scholar

    [9]

    周常河 2009 激光与光电子学进展 62 2

    Zhou C H 2009 LOP 62 2

    [10]

    Rao W, Song Y, Liu M, Jin C 2010 Optik 121 1934Google Scholar

    [11]

    Jugessur A S, Dou J, Aitchison J S 2010 J.Vac. Sci. Technol. B 28 C6O8Google Scholar

    [12]

    Delouise L A, Kou P M, Miller B L 2005 Analytical Chemistry 77 3222Google Scholar

    [13]

    罗娅慧, 李刚, 陈强, 赵建龙 2012 高等学校化学学报 33 2178Google Scholar

    Luo Y H, Li G, Chen Q, Zhao J L 2012 Chem. J. Chinese U. 33 2178Google Scholar

    [14]

    An S J, Yoon J, Lee J, Kwon O D 2006 J. Appl. Phys. 99 66

    [15]

    舒方杰, 杨起帆 2012 激光与光电子学进展 49 48

    Shu F J, Yang Q F 2012 LOP 49 48

    [16]

    Xiao Y F, Zou C L, Xue P, Xiao L, Li Y, Dong C H, Han Z F,Gong Q 2010 Phys. Rev. A 81 1532

    [17]

    Qian S X, Snow J B, Tzeng H M,Chang R K 1986 Science 231 486Google Scholar

    [18]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light Sci. Appl. 4 e282Google Scholar

    [19]

    Zhang B, Wang Z, Brodbeck S, Schneider C, Kamp M, Höfling S, Deng H 2014 Light Sci. Appl. 3 e135Google Scholar

    [20]

    Lekenta K, Król M, Mirek R, Stephan D, Mazur R, Morawiak P, Kula P, Piecek W, Lagoudakis P G, Piętka B 2018 Light Sci. Appl. 4 74

    [21]

    Liu X, Gao J, Gao J, Yang H, Wang X, Wang T, Shen Z, Zhen L, Hai L, Jian Z 2018 Light Sci. Appl. 7 14Google Scholar

    [22]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 797Google Scholar

    [23]

    Nilsson D, Nielsen T, Kristensen A 2004 Rev. Sci. Instrum. 75 4481Google Scholar

    [24]

    Jiang Y, Zhen X, Huang T, Liu Y, Fan G, Xi J, Gao W, Chao G 2018 Adv. Funct. Mater. 28 1707024Google Scholar

    [25]

    Ta V D, Yang S, Wang Y, Gao Y, He T, Chen R, Demir H V, Sun H 2015 Appl. Phys. Lett. 107 839

    [26]

    Wang C, Liu Y, Ji Z, Wang E, Li R, Hui J, Tang Q, Li H, Hu W P 2009 Chem. Mat. 21 2840Google Scholar

    [27]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [28]

    Chen R, Ling B, Sun X W, Sun H D 2011 Adv. Mater. 23 2128Google Scholar

    [29]

    Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Conti G N, Pelli S, Soria S, Righini G C 2010 Laser Photonics Rev. 4 457Google Scholar

    [30]

    Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y 2015 Sci. Rep. 5 8072Google Scholar

    [31]

    Zhan X, Xu H L, Sun H B 2016 Front. Optoelectron. China 9 1Google Scholar

    [32]

    Xu H L, Sun H B 2015 Sci. China Phys. Mech. Astron. 58 1

    [33]

    Xu B B, Xia H, Niu L G, Zhang Y L, Kai S, Chen Q D, Hiroaki M 2010 Small 6 1762Google Scholar

    [34]

    Wong D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun HB 2009 Lab. Chip 9 2391Google Scholar

    [35]

    Xu B B 2013 Lab. Chip 13 1677Google Scholar

    [36]

    Hou Z S, Huang Q L, Zhan Xue Peng, Li A W, Xu H L 2017 RSC. Advances 1 16531

    [37]

    李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201Google Scholar

    Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201Google Scholar

    [38]

    Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao Y S 2016 J. Am. Chem. Soc. 138 1118Google Scholar

    [39]

    赵小兵, 张巍巍, 吴潇杰, 徐如辉, 秦朝菲, 王闽 2018 传感技术学报 4 529Google Scholar

    Zhao X B, Zhang W W, Wu X J, Xu R H, Qin C F, Wang M 2018 Chin. Sens. Acta 4 529Google Scholar

  • [1] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [2] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [3] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [4] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [5] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [6] 吕月兰, 尹向宝, 杨月, 刘永军, 苑立波. 染料掺杂液晶可调谐光纤荧光光源的研究. 物理学报, 2017, 66(15): 154205. doi: 10.7498/aps.66.154205
    [7] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [8] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [9] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远. Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性. 物理学报, 2016, 65(14): 144205. doi: 10.7498/aps.65.144205
    [10] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [11] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [12] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [13] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [14] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究. 物理学报, 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [15] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [16] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [17] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [18] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] 韩 群, 吕可诚, 李家方, 李乙钢, 陈胜平1. 一种新颖的光纤光栅温度调谐装置的原理与实验研究. 物理学报, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
计量
  • 文章访问数:  10064
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-06-21
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回