-
耳语回廊模式(WGM)微腔具有品质因子高、模式体积小、制作工艺简单多样、同时对周围环境敏感性极高等优点, 已被广泛应用于传感和检测. 然而, 真正的尺寸可控的三维微腔却少有报道. 本文报道了一种有源回音壁模式微球腔, 由商业光刻胶SU-8作为腔体材料, 有机染料罗丹明B作为增益介质. 利用飞秒激光双光子聚合, 可以得到尺寸精确可控的真三维微球激光器. 同时, 由于有机染料的特殊发光机理, 随着环境温度的变化, 染料荧光带飘移, 且会与腔体本征模式形成新的共振激发. 在一定温度变化范围内(20 ℃—35 ℃), 微球激光器的主激射峰波长与温度呈类线性相关. 研究结果对合理设计具有理想性能的小型化激光器具有积极的启发.The whispering gallery mode (WGM) microcavity has been widely used for sensing and detection because of its high quality factor, small mode size, simple and diverse manufacturing process, and high sensitivity to the surrounding environment. Microsphere cavityand microdisk cavity are typical whispering gallery mode microcavities. However, the real controllable size of the on-chip three-dimensional microsphere cavity has rarely been reported because it is difficult to prepare by photolithography. At the same time, most of the current microsphere cavity are prepared by hot melting, which have the poor ability to control the size. In this article, we have mainly demonstrated the fabrication of a dye-doped polymer whispering gallery mode microsphere by femtosecond laser two-photon polymerization, which shows good surface smoothness with a fabrication spatial resolution beyond the diffraction limit. The microsphere cavity consists with commercial photoresist SU-8 as the cavity material and Rhodamine B as the gain medium. With the 532 nm pump, the RhB-doped SU-8 can emit fluorescence in the spectral range of 600–700 nm, and thus resonant whispering gallery laser modes in this spectral region can be eventually formed in the microsphere cavities. The microcavity shows excellent lasing performance with a quality factor of ~2000. Due to the special luminescence mechanism of organic dyes, the fluorescence spectrum of the dye drifts with the change of ambient temperature, and it will form a new resonance excitation with the eigenmode of the cavity. Within a certain temperature range (20 ℃-35 ℃), the wavelength of the main lasing peak is linearly related to temperature. The results shows that the organic dye doped micro-resonator has a unique laser mechanism which can be used to construct a new type of microlaser. Moreover, the tunable microsphere laser can be used as a temperature sensor after further optimized. We believe our work will provide a positive inspiration for the rational design of miniaturized lasers with ideal performance.
-
Keywords:
- femtosecond laser two-photon polymerization /
- whispering gallery mode /
- temperature tuning /
- 3D microsphere
[1] Capon J, Baets J D, Rycke I D, Smet H D, Doutreloigne J, Calster A V, Vanfleteren J 1992 Sensors Actuat. A: Phys. 32 437Google Scholar
[2] So V C Y, Normandin R, Stegeman G I 1979 Opt. Soc. Am. 69 1166Google Scholar
[3] Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W 2014 Light Sci. Appl. 3 e175Google Scholar
[4] Stegeman G I, Seaton C 1985 J. Appl. Phys. 58 R57Google Scholar
[5] Tien P K 1977 Rev. Mod. Phys. 49 361Google Scholar
[6] Wu Q, Turpin J P,Werner D H 2012 Light Sci. Appl. 1 e38Google Scholar
[7] 陈小军, 张自丽, 葛辉良 2012 物理学报 61 174211Google Scholar
Chen X J, Zhang Z L, Ge H L 2012 Acta Phys. Sin. 61 174211Google Scholar
[8] Muller A, Shih C K, Ahn J, Lu D, Gazula D, Deppe D G 2006 Appl. Phys. Lett. 88 163105Google Scholar
[9] 周常河 2009 激光与光电子学进展 62 2
Zhou C H 2009 LOP 62 2
[10] Rao W, Song Y, Liu M, Jin C 2010 Optik 121 1934Google Scholar
[11] Jugessur A S, Dou J, Aitchison J S 2010 J.Vac. Sci. Technol. B 28 C6O8Google Scholar
[12] Delouise L A, Kou P M, Miller B L 2005 Analytical Chemistry 77 3222Google Scholar
[13] 罗娅慧, 李刚, 陈强, 赵建龙 2012 高等学校化学学报 33 2178Google Scholar
Luo Y H, Li G, Chen Q, Zhao J L 2012 Chem. J. Chinese U. 33 2178Google Scholar
[14] An S J, Yoon J, Lee J, Kwon O D 2006 J. Appl. Phys. 99 66
[15] 舒方杰, 杨起帆 2012 激光与光电子学进展 49 48
Shu F J, Yang Q F 2012 LOP 49 48
[16] Xiao Y F, Zou C L, Xue P, Xiao L, Li Y, Dong C H, Han Z F,Gong Q 2010 Phys. Rev. A 81 1532
[17] Qian S X, Snow J B, Tzeng H M,Chang R K 1986 Science 231 486Google Scholar
[18] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light Sci. Appl. 4 e282Google Scholar
[19] Zhang B, Wang Z, Brodbeck S, Schneider C, Kamp M, Höfling S, Deng H 2014 Light Sci. Appl. 3 e135Google Scholar
[20] Lekenta K, Król M, Mirek R, Stephan D, Mazur R, Morawiak P, Kula P, Piecek W, Lagoudakis P G, Piętka B 2018 Light Sci. Appl. 4 74
[21] Liu X, Gao J, Gao J, Yang H, Wang X, Wang T, Shen Z, Zhen L, Hai L, Jian Z 2018 Light Sci. Appl. 7 14Google Scholar
[22] Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 797Google Scholar
[23] Nilsson D, Nielsen T, Kristensen A 2004 Rev. Sci. Instrum. 75 4481Google Scholar
[24] Jiang Y, Zhen X, Huang T, Liu Y, Fan G, Xi J, Gao W, Chao G 2018 Adv. Funct. Mater. 28 1707024Google Scholar
[25] Ta V D, Yang S, Wang Y, Gao Y, He T, Chen R, Demir H V, Sun H 2015 Appl. Phys. Lett. 107 839
[26] Wang C, Liu Y, Ji Z, Wang E, Li R, Hui J, Tang Q, Li H, Hu W P 2009 Chem. Mat. 21 2840Google Scholar
[27] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar
[28] Chen R, Ling B, Sun X W, Sun H D 2011 Adv. Mater. 23 2128Google Scholar
[29] Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Conti G N, Pelli S, Soria S, Righini G C 2010 Laser Photonics Rev. 4 457Google Scholar
[30] Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y 2015 Sci. Rep. 5 8072Google Scholar
[31] Zhan X, Xu H L, Sun H B 2016 Front. Optoelectron. China 9 1Google Scholar
[32] Xu H L, Sun H B 2015 Sci. China Phys. Mech. Astron. 58 1
[33] Xu B B, Xia H, Niu L G, Zhang Y L, Kai S, Chen Q D, Hiroaki M 2010 Small 6 1762Google Scholar
[34] Wong D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun HB 2009 Lab. Chip 9 2391Google Scholar
[35] Xu B B 2013 Lab. Chip 13 1677Google Scholar
[36] Hou Z S, Huang Q L, Zhan Xue Peng, Li A W, Xu H L 2017 RSC. Advances 1 16531
[37] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201Google Scholar
Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201Google Scholar
[38] Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao Y S 2016 J. Am. Chem. Soc. 138 1118Google Scholar
[39] 赵小兵, 张巍巍, 吴潇杰, 徐如辉, 秦朝菲, 王闽 2018 传感技术学报 4 529Google Scholar
Zhao X B, Zhang W W, Wu X J, Xu R H, Qin C F, Wang M 2018 Chin. Sens. Acta 4 529Google Scholar
-
-
[1] Capon J, Baets J D, Rycke I D, Smet H D, Doutreloigne J, Calster A V, Vanfleteren J 1992 Sensors Actuat. A: Phys. 32 437Google Scholar
[2] So V C Y, Normandin R, Stegeman G I 1979 Opt. Soc. Am. 69 1166Google Scholar
[3] Schumann M, Bückmann T, Gruhler N, Wegener M, Pernice W 2014 Light Sci. Appl. 3 e175Google Scholar
[4] Stegeman G I, Seaton C 1985 J. Appl. Phys. 58 R57Google Scholar
[5] Tien P K 1977 Rev. Mod. Phys. 49 361Google Scholar
[6] Wu Q, Turpin J P,Werner D H 2012 Light Sci. Appl. 1 e38Google Scholar
[7] 陈小军, 张自丽, 葛辉良 2012 物理学报 61 174211Google Scholar
Chen X J, Zhang Z L, Ge H L 2012 Acta Phys. Sin. 61 174211Google Scholar
[8] Muller A, Shih C K, Ahn J, Lu D, Gazula D, Deppe D G 2006 Appl. Phys. Lett. 88 163105Google Scholar
[9] 周常河 2009 激光与光电子学进展 62 2
Zhou C H 2009 LOP 62 2
[10] Rao W, Song Y, Liu M, Jin C 2010 Optik 121 1934Google Scholar
[11] Jugessur A S, Dou J, Aitchison J S 2010 J.Vac. Sci. Technol. B 28 C6O8Google Scholar
[12] Delouise L A, Kou P M, Miller B L 2005 Analytical Chemistry 77 3222Google Scholar
[13] 罗娅慧, 李刚, 陈强, 赵建龙 2012 高等学校化学学报 33 2178Google Scholar
Luo Y H, Li G, Chen Q, Zhao J L 2012 Chem. J. Chinese U. 33 2178Google Scholar
[14] An S J, Yoon J, Lee J, Kwon O D 2006 J. Appl. Phys. 99 66
[15] 舒方杰, 杨起帆 2012 激光与光电子学进展 49 48
Shu F J, Yang Q F 2012 LOP 49 48
[16] Xiao Y F, Zou C L, Xue P, Xiao L, Li Y, Dong C H, Han Z F,Gong Q 2010 Phys. Rev. A 81 1532
[17] Qian S X, Snow J B, Tzeng H M,Chang R K 1986 Science 231 486Google Scholar
[18] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light Sci. Appl. 4 e282Google Scholar
[19] Zhang B, Wang Z, Brodbeck S, Schneider C, Kamp M, Höfling S, Deng H 2014 Light Sci. Appl. 3 e135Google Scholar
[20] Lekenta K, Król M, Mirek R, Stephan D, Mazur R, Morawiak P, Kula P, Piecek W, Lagoudakis P G, Piętka B 2018 Light Sci. Appl. 4 74
[21] Liu X, Gao J, Gao J, Yang H, Wang X, Wang T, Shen Z, Zhen L, Hai L, Jian Z 2018 Light Sci. Appl. 7 14Google Scholar
[22] Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 797Google Scholar
[23] Nilsson D, Nielsen T, Kristensen A 2004 Rev. Sci. Instrum. 75 4481Google Scholar
[24] Jiang Y, Zhen X, Huang T, Liu Y, Fan G, Xi J, Gao W, Chao G 2018 Adv. Funct. Mater. 28 1707024Google Scholar
[25] Ta V D, Yang S, Wang Y, Gao Y, He T, Chen R, Demir H V, Sun H 2015 Appl. Phys. Lett. 107 839
[26] Wang C, Liu Y, Ji Z, Wang E, Li R, Hui J, Tang Q, Li H, Hu W P 2009 Chem. Mat. 21 2840Google Scholar
[27] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar
[28] Chen R, Ling B, Sun X W, Sun H D 2011 Adv. Mater. 23 2128Google Scholar
[29] Chiasera A, Dumeige Y, Féron P, Ferrari M, Jestin Y, Conti G N, Pelli S, Soria S, Righini G C 2010 Laser Photonics Rev. 4 457Google Scholar
[30] Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y 2015 Sci. Rep. 5 8072Google Scholar
[31] Zhan X, Xu H L, Sun H B 2016 Front. Optoelectron. China 9 1Google Scholar
[32] Xu H L, Sun H B 2015 Sci. China Phys. Mech. Astron. 58 1
[33] Xu B B, Xia H, Niu L G, Zhang Y L, Kai S, Chen Q D, Hiroaki M 2010 Small 6 1762Google Scholar
[34] Wong D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun HB 2009 Lab. Chip 9 2391Google Scholar
[35] Xu B B 2013 Lab. Chip 13 1677Google Scholar
[36] Hou Z S, Huang Q L, Zhan Xue Peng, Li A W, Xu H L 2017 RSC. Advances 1 16531
[37] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201Google Scholar
Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201Google Scholar
[38] Dong H, Wei Y, Zhang W, Wei C, Zhang C, Yao J, Zhao Y S 2016 J. Am. Chem. Soc. 138 1118Google Scholar
[39] 赵小兵, 张巍巍, 吴潇杰, 徐如辉, 秦朝菲, 王闽 2018 传感技术学报 4 529Google Scholar
Zhao X B, Zhang W W, Wu X J, Xu R H, Qin C F, Wang M 2018 Chin. Sens. Acta 4 529Google Scholar
计量
- 文章访问数: 10064
- PDF下载量: 147
- 被引次数: 0