搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的心率变异性度量方法

邵士亮 王挺 宋纯贺 崔婀娜 赵海 姚辰

引用本文:
Citation:

一种新的心率变异性度量方法

邵士亮, 王挺, 宋纯贺, 崔婀娜, 赵海, 姚辰

A novel method of heart rate variability measurement

Shao Shi-Liang, Wang Ting, Song Chun-He, Cui E-Nuo, Zhao Hai, Yao Chen
PDF
HTML
导出引用
  • 心率变异性的复杂波动反映了心脏的自主调节功能. 本文提出了一种新的心率变异性度量方法—ICBN方法, 该方法通过改进的自适应噪声完备集合经验模态分解方法对心率变异性信号进行分解, 得到多个模态分量, 计算每个模态分量的bubble熵得到熵值向量, 把该向量映射成复杂网络, 通过计算网络的特征参数, 对心率变异性在不同时频尺度状态下的非线性特征之间的耦合关系进行度量. 首先, 采用时域、频域和ICBN分析方法对29名充血性心力衰竭病人和29名正常窦性心律对象的心率变异性进行分析, 结果表明: 时域指标三角指数HRVTi, 频域指标LF/HF, 网络层级加权值WB, 平均点权值PW, 特征路径长度CL具有统计学差异; 基于网络层级加权值WB, 特征路径长度CL, 频域指标LF/HF和Fisher判别方法的识别模型对充血性心力衰竭病人的识别正确率达到89.66%. 然后, 又对43名房颤心律失常患者和43名正常窦性心律对象的心率变异性进行分析, 结果表明: 时域指标SDNN, pNN50, RMSSD, 频域指标LF/HF, 网络层级加权值WB, 平均点权值PW具有统计学差异; 时域指标pNN50, RMSSD, 频域指标LF/HF和网络层级加权值WB, 平均点权值PW作为特征向量, Fisher判别方法作为分类器, 对房颤心律失常患者的识别正确率达到91.86%. 综合以上实验结果可知, 本文为心率变异性的度量研究提供了一种新的思路.
    The complex fluctuation of heart rate variability reflects the autonomous regulation function of the heart. In this paper, a novel method of measuring the heart rate variability is proposed. Firstly, the heart rate variability signal is decomposed by the improved complete ensemble empirical mode decomposition with adaptive noise method, and the multiple intrinsic mode functions are obtained, and the bubble entropy of each intrinsic mode function is calculated to obtain an entropy value vector. Then, the vector is mapped to a network based on a limited penetrable horizontal visibility graph method. By calculating various characteristic parameters of the network, the coupling relationship between the nonlinear features of heart rate variability in different time-frequency scale states are studied. The characteristic parameters include mean value of aggregation coefficient (MC), the characteristic path length (CL), the topological entropy of network (TE), the network level weighted bubble value (WB), and the pseudo mean value of node weight (PW). Firstly, the heart rate variabilities of 29 patients with congestive heart failure and 29 normal sinus heart rhythm subjects are analyzed by time domain, frequency domain and ICBN analysis method, the T test is used for statistical analysis, and Fisher discriminant method is used for classification. The results show that the time domain triangular index HRVTI, frequency domain index LF/HF, WB, PW and CL in ICBN have statistical differences. The accuracy rate of recognition model based on WB, CL, frequency domain index LF/HF and Fisher discriminant method is 89.66%. Secondly, the heart rate variabilities of 43 patients with atrial fibrillation arrhythmia and another 43 normal sinus heart rhythm subjects are analyzed by the same methods, including the time domain analyzed method, frequency domain analyzed method, and ICBN analyzed method. Then, the T test is also used for statistical analysis, and Fisher discriminant method is used for classification. The results show that using the time domain index pNN5 and RMSSD, frequency index LF/HF, ICBN index WB and PW as the feature vectors, and the Fisher discriminant mode as the classifier, the accuracy rate of recognition for atrial fibrillation arrhythmia is 91.86%. From these results it is concluded that the ICBN method provides a new idea for the heart rate variability measurement.
      通信作者: 邵士亮, shaoshiliangswu@163.com
    • 基金项目: 重大科技创新项目(批准号: N161608001)资助的课题.
      Corresponding author: Shao Shi-Liang, shaoshiliangswu@163.com
    • Funds: Project supported by the Major Scientific and Technological Innovation Projects, China (Grant No. N161608001).
    [1]

    Narin A, Isler Y, Ozer M, Perc M 2018 Phys. A: Stat. Mech. Appl. 509 56Google Scholar

    [2]

    司峻峰, 黄晓林, 周玲玲, 刘红星 2014 物理学报 54 40504

    Si J F, Huang X L, Zhou L L, Liu H X 2014 Acta Phys. Sin. 54 40504

    [3]

    Wendt H, Abry P, Kiyono K, Hayano J, Watanabe E, Yamamoto Y 2019 IEEE Trans. Biomed. Eng. 66 80Google Scholar

    [4]

    Wang Y, Wei S S, Zhang S, Zhang Y T, Zhao L N, Liu C Y, Murray A 2018 Biomed. Signal Process. Control 42 30Google Scholar

    [5]

    Pernice R, Javorka M, Krohova J, Czippelova B 2019 Med. Biol. Eng. Comput. 57 1247Google Scholar

    [6]

    Deus L A, Sousa C V, Rosa T S, Souto J M 2019 Physiol. Behav. 205 39Google Scholar

    [7]

    Li Y F, Pan W F, Li K Y, Jiang Q, Liu G Z 2019 IEEE J. Biomedical Health Informat. 23 175Google Scholar

    [8]

    刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱 2014 物理学报 19 198703Google Scholar

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 19 198703Google Scholar

    [9]

    Asha N D, Joseph K P 2013 J. Mech. Med. Biol. 13 1350061Google Scholar

    [10]

    Xia J N, Shang P J, Wang J 2013 Nonlinear Dyn. 74 1183Google Scholar

    [11]

    Singh V, Gupta A, Sohal J S, Singh A 2019 Med. Biol. Eng. Comput. 57 741Google Scholar

    [12]

    Alvarez D, Sanchez-Fernandez A, Andres-Blanco A M, Gutierrez-Tobal G C, Vaquerizo-Villar F, Barroso-Garcia V, Hornero R 2019 Entropy 21 381Google Scholar

    [13]

    Li T B, Yao W P, Wu M, Shi Z R, Wang J, Ning X B 2017 Phys. A: Stat. Mech. Appl. 471 492Google Scholar

    [14]

    Manis G, Aktaruzzaman M, Sassi R 2017 IEEE Trans. Biomed. Eng. 64 2711Google Scholar

    [15]

    Acharya U R, Fujita H, Sudarshan V K, Oh S L, Muhammad A, Koh J E W, Tan J H, Chua C K, Chua K P, Tan R S 2016 Neural Comput. Appl. 28 3073

    [16]

    Gao Z, Cai Q, Yang Y, Dang W, Zhang S 2016 Sci. Rep. 6 35622Google Scholar

    [17]

    霍铖宇, 马小飞, 宁新宝 2017 物理学报 66 160502Google Scholar

    Huo C Y, Ma X F, Ning X B 2017 Acta Phys. Sin. 66 160502Google Scholar

    [18]

    Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215

    [19]

    Lin Y C, Lin Y H, Lo M T, Peng C K, Huang N E, Yang C C H, Kuo T B J 2016 Chaos 26 023109Google Scholar

    [20]

    Clifford G D, Tarassenko L 2005 IEEE Trans. Biomed. Eng. 52 630Google Scholar

    [21]

    Colominas M A, Schlotthauer G, Torres M E 2014 Biomed. Signal Process. Control 14 19Google Scholar

    [22]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [23]

    刘晓, 赵海, 张君, 王进法 2016 东北大学学报(自然科学版) 37 486Google Scholar

    Liu X, Zhao H, Zhang J, Wang J F 2016 Journal of Northeastern University (Natural Science) 37 486Google Scholar

    [24]

    Narin A, Isler Y, Ozer M, Perc M 2018 Physica A 509 65

  • 图 1  HRV分析框架图

    Fig. 1.  Framework of the HRV analysis.

    图 2  HRV信号获得示意图

    Fig. 2.  Schematic of obtaining HRV signal.

    图 3  ICBN分析方法实现过程框图

    Fig. 3.  Implementation process of ICBN analysis method.

    图 4  NSR1和CHF这2组对象具有极显著差异的指标的均值与标准差

    Fig. 4.  Mean and variance of the indicators with very significant differences between the two groups of NSR1 and CHF.

    图 5  NSR2和AF这2组对象具有极显著差异的指标的均值与标准差

    Fig. 5.  Mean and variance of the indicators with very significant differences between the two groups of NSR2 and AF.

    表 1  时域分析统计特征

    Table 1.  Statistical features in time domain.

    指标单位描述与定义
    SDNN${\rm{ms}}$相邻正常心跳间隔的标准差${\rm{SDNN}} = {\sqrt {\dfrac{1}{N}\displaystyle \sum \limits_{i = 1}^N \left( {{\rm{RR}}{s_i} - \dfrac{1}{N}\mathop \sum \limits_{i = 1}^N {\rm{RR}}{s_i}} \right)} ^{}}$
    RMSSDms相邻正常心跳间隔差值的平方和均值的均方根${\rm{RMSSD}} = \sqrt {\dfrac{1}{{N - 1}}\displaystyle \sum \limits_{i = 1}^{N - 1} {{\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right)}^2}} $
    pNN50%相邻正常心跳间隔差值超过50毫秒的比例${\rm{PNN}}50 = \dfrac{{{\rm{num}}\left[ {\left( {{\rm{RR}}{s_{i + 1}} - {\rm{RR}}{s_i}} \right) > 50{\rm{ ms}}} \right]}}{{N - 1}}$
    HRVTi相邻正常心跳间隔的总个数除以相邻正常心跳间隔直方图的高度
    下载: 导出CSV

    表 2  频域分析统计特征

    Table 2.  Statistical features in frequency domain.

    指标单位描述与定义频率范围
    Total power${\rm{m}}{{\rm{s}}^2}$所有频率范围的功率谱总和 ≤ 0.4 Hz
    VLF${\rm{m}}{{\rm{s}}^2}$甚低频范围内的功率谱0.003—0.040 Hz
    LF${\rm{m}}{{\rm{s}}^2}$低频范围内的功率谱0.04—0.15 Hz
    HF${\rm{m}}{{\rm{s}}^2}$高频范围内的功率谱0.15—0.40 Hz
    LF/HF%LF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$ 与HF$\left[ {{\rm{m}}{{\rm{s}}^2}} \right]$的比值
    下载: 导出CSV

    表 3  NSR1和CHF患者不同分析方法下的结果

    Table 3.  Statistical analysis results of HRV index under different analysis methods.

    指标NSR1(mean$ \pm $SD)CHF(mean$ \pm $SD)标准误差差值的95%置信区间$p$
    下限上限
    ICBNWB21.853$ \pm $1.47927.835$ \pm $7.7413.0508.9140***
    PW0.563$ \pm $0.0510.455$ \pm $0.103–0.151–0.0660***
    TE0.956$ \pm $0.0190.937$ \pm $0.037–0.034–0.0050.009**
    CL1.135$ \pm $0.1330.954$ \pm $0.194–0.268–0.0940***
    MC0.684$ \pm $0.0350.705$ \pm $0.026–0.038–0.0060.009**
    时域SDNN81.507$ \pm $38.56659.535$ \pm $44.76–43.9510.0070.05
    pNN5011.476$ \pm $14.67610.772$ \pm $14.110–8.2776.8700.853
    RMSSD51.172$ \pm $54.89560.307$ \pm $58.497–20.70738.9760.542
    HRVTi6.886$ \pm $2.4524.093$ \pm $1.494–3.861–1.7250***
    频域TP1.809$ \pm $4.9091.443$ \pm $4.052–2.7342.0010.758
    VLF0.0003$ \pm $0.4481.387$ \pm $6.214–1.2653.3700.367
    LF0.212$ \pm $0.3330.119$ \pm $0.316–0.2630.0780.281
    HF1.597$ \pm $4.6081.322$ \pm $3.745–2.4831.9340.804
    LF/HF0.288$ \pm $0.1840.108$ \pm $0.083–0.255–0.1050***
    注: *, **, ***分别代表$p < 0.05$$p < 0.01$, $p < 0.001$.
    下载: 导出CSV

    表 4  不同特征的CHF识别性能对比

    Table 4.  Performance comparisons of different indices for CHF recognition

    指标TPTNFPFNAccSenSpeAUC
    WB192710279.3190.4872.9781.72
    PW192410574.1479.1770.5975.53
    CL20239674.1476.9271.8874.40
    HRVTi231961072.4169.7076.0072.85
    LF/HF251741272.4175.6880.9578.32
    注: TP, 被判定为CHF病人的数量; TN, 被判定为NSR1对象的数量; FP, NSR1对象被判定为CHF病人的数量; FN, CHF病人被判定为NSR1对象的数量; 正确率${\rm{Acc}} = \dfrac{{{\rm{TP + TN}}}}{{{\rm{TP \!+\! FP \!+\! TN \!+\! FN}}}} \times 100\% $; 灵敏度${\rm{Sen}} = \dfrac{{T{\rm{P}}}}{{T{\rm{P}} + {\rm{FN}}}} \times 100\% $; 特异度${\rm{Spe}} = \dfrac{{{\rm{TN}}}}{{{\rm{FP \!+\! TN}}}} \times 100\% $; ${\rm{AUC}} = \dfrac{1}{2}\left( {\dfrac{{{\rm{TP}}}}{{{\rm{TP + FN}}}}{\rm{ + }}\dfrac{{{\rm{TN}}}}{{{\rm{TN + FP}}}}} \right) \times 100\% $.
    下载: 导出CSV

    表 5  不同特征组合的CHF识别性能对比

    Table 5.  Performance comparisons of different indices for CHF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB&CL&LF/HF25274289.6692.5987.189.85
    WB&PW&CL&HRVTi&LF/HF24275287.9392.3184.3888.35
    WB&PW&CL&LF/HF24275287.9392.3184.3888.35
    WB&PW22297087.9310080.5690.28
    WB&CL&HRVTi&LF/HF25254486.2086.2186.2186.21
    WB&PW&HRVTi&LF/HF24265386.2088.8983.8786.38
    WB&CL&HRVTi25254486.2086.2186.2186.21
    WB&PW&HRVTi24265386.2088.8983.8786.38
    下载: 导出CSV

    表 6  NSR2和AF患者在不同分析方法下的结果

    Table 6.  Statistical analysis results of HRV index under different analysis methods

    指标NSR2(mean$ \pm $SD)AF(mean$ \pm $SD)标准误差差值的95%置信区间$p$
    下限上限
    ICBNWB21.483$ \pm $1.36724.243$ \pm $3.1051.7313.7890***
    PW0.567$ \pm $0.0740.454$ \pm $0.090–0.148–0.0770***
    TE0.941$ \pm $0.0500.960$ \pm $0.0100.0040.0350.013*
    CL1.113$ \pm $0.1460.999$ \pm $0.170–0.183–0.0470.001**
    MC0.687$ \pm $0.0430.664$ \pm $0.032–0.024–0.0080.04*
    时域SDNN74.698$ \pm $26.193139.016$ \pm $62.48010.33143.7730***
    pNN5010.123$ \pm $9.61045.495$ \pm $30.6874.90425.6200***
    RMSSD36.402$ \pm $19.003170.926$ \pm $97.98015.220104.2560***
    HRVTi7.735$ \pm $3.2106.049$ \pm $2.488–2.918–0.4550.008**
    频域TP0.615$ \pm $0.61213.493$ \pm $19.3697.00018.7540.001**
    VLF0.0002$ \pm $0.00030.017$ \pm $0.063–2.25636.1470.083
    LF0.157$ \pm $0.1541.204$ \pm $1.6200.5531.5400.002**
    HF0.458$ \pm $0.51512.272$ \pm $17.9086.38117.2470.001**
    LF/HF0.515$ \pm $0.4190.126$ \pm $0.059–0.519–0.2590***
    注: *, **, ***分别代表$p < 0.05$, $p < 0.01$, $p < 0.001$.
    下载: 导出CSV

    表 7  不同特征的AF识别性能对比

    Table 7.  Performance comparisons of different indices for AF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB303713677.9183.3374.0078.67
    PW304213183.7296.7776.3686.57
    SDNN313412975.5877.5073.9175.71
    pNN50283915477.9187.5072.2279.86
    RMSSD2933141072.0974.3670.2172.29
    LFHF422411976.7468.8596.0082.43
    下载: 导出CSV

    表 8  不同特征的AF识别性能对比

    Table 8.  Performance comparisons of different indices for AF recognition.

    指标TPTNFPFNAccSenSpeAUC
    WB&PW&pNN50&RMSSD&LFHF38415291.8695.0089.1392.07
    WB&PW&SDNN&LFHF38405390.7092.6888.8990.79
    WB&PW&RMSSD&LFHF38405390.7092.6888.8990.79
    WB&PW&SDNN&RMSSD37416290.7094.8787.2391.05
    WB&PW&SDNN&pNN50&RMSSD36427190.7097.3085.7191.51
    下载: 导出CSV
  • [1]

    Narin A, Isler Y, Ozer M, Perc M 2018 Phys. A: Stat. Mech. Appl. 509 56Google Scholar

    [2]

    司峻峰, 黄晓林, 周玲玲, 刘红星 2014 物理学报 54 40504

    Si J F, Huang X L, Zhou L L, Liu H X 2014 Acta Phys. Sin. 54 40504

    [3]

    Wendt H, Abry P, Kiyono K, Hayano J, Watanabe E, Yamamoto Y 2019 IEEE Trans. Biomed. Eng. 66 80Google Scholar

    [4]

    Wang Y, Wei S S, Zhang S, Zhang Y T, Zhao L N, Liu C Y, Murray A 2018 Biomed. Signal Process. Control 42 30Google Scholar

    [5]

    Pernice R, Javorka M, Krohova J, Czippelova B 2019 Med. Biol. Eng. Comput. 57 1247Google Scholar

    [6]

    Deus L A, Sousa C V, Rosa T S, Souto J M 2019 Physiol. Behav. 205 39Google Scholar

    [7]

    Li Y F, Pan W F, Li K Y, Jiang Q, Liu G Z 2019 IEEE J. Biomedical Health Informat. 23 175Google Scholar

    [8]

    刘大钊, 王俊, 李锦, 李瑜, 徐文敏, 赵筱 2014 物理学报 19 198703Google Scholar

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 19 198703Google Scholar

    [9]

    Asha N D, Joseph K P 2013 J. Mech. Med. Biol. 13 1350061Google Scholar

    [10]

    Xia J N, Shang P J, Wang J 2013 Nonlinear Dyn. 74 1183Google Scholar

    [11]

    Singh V, Gupta A, Sohal J S, Singh A 2019 Med. Biol. Eng. Comput. 57 741Google Scholar

    [12]

    Alvarez D, Sanchez-Fernandez A, Andres-Blanco A M, Gutierrez-Tobal G C, Vaquerizo-Villar F, Barroso-Garcia V, Hornero R 2019 Entropy 21 381Google Scholar

    [13]

    Li T B, Yao W P, Wu M, Shi Z R, Wang J, Ning X B 2017 Phys. A: Stat. Mech. Appl. 471 492Google Scholar

    [14]

    Manis G, Aktaruzzaman M, Sassi R 2017 IEEE Trans. Biomed. Eng. 64 2711Google Scholar

    [15]

    Acharya U R, Fujita H, Sudarshan V K, Oh S L, Muhammad A, Koh J E W, Tan J H, Chua C K, Chua K P, Tan R S 2016 Neural Comput. Appl. 28 3073

    [16]

    Gao Z, Cai Q, Yang Y, Dang W, Zhang S 2016 Sci. Rep. 6 35622Google Scholar

    [17]

    霍铖宇, 马小飞, 宁新宝 2017 物理学报 66 160502Google Scholar

    Huo C Y, Ma X F, Ning X B 2017 Acta Phys. Sin. 66 160502Google Scholar

    [18]

    Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E 2000 Circulation 101 e215

    [19]

    Lin Y C, Lin Y H, Lo M T, Peng C K, Huang N E, Yang C C H, Kuo T B J 2016 Chaos 26 023109Google Scholar

    [20]

    Clifford G D, Tarassenko L 2005 IEEE Trans. Biomed. Eng. 52 630Google Scholar

    [21]

    Colominas M A, Schlotthauer G, Torres M E 2014 Biomed. Signal Process. Control 14 19Google Scholar

    [22]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [23]

    刘晓, 赵海, 张君, 王进法 2016 东北大学学报(自然科学版) 37 486Google Scholar

    Liu X, Zhao H, Zhang J, Wang J F 2016 Journal of Northeastern University (Natural Science) 37 486Google Scholar

    [24]

    Narin A, Isler Y, Ozer M, Perc M 2018 Physica A 509 65

  • [1] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [2] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [3] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [4] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] 周建, 贾贞, 李科赞. 复杂网络谱粗粒化方法的改进算法. 物理学报, 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [6] 霍铖宇, 马小飞, 宁新宝. 基于有限穿越水平可视图的短时睡眠心率变异性研究. 物理学报, 2017, 66(16): 160502. doi: 10.7498/aps.66.160502
    [7] 李勇军, 尹超, 于会, 刘尊. 基于最大熵模型的微博传播网络中的链路预测. 物理学报, 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [8] 董泽芹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于Kendall改进的同步算法癫痫脑网络分析. 物理学报, 2014, 63(20): 208705. doi: 10.7498/aps.63.208705
    [9] 曾超, 蒋奇云, 陈朝阳, 徐敏. 心率变异性分析在新生儿疼痛检测中的应用. 物理学报, 2014, 63(20): 208704. doi: 10.7498/aps.63.208704
    [10] 司峻峰, 黄晓林, 周玲玲, 刘红星. 心率变异性的异方差特征研究. 物理学报, 2014, 63(4): 040504. doi: 10.7498/aps.63.040504
    [11] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步. 物理学报, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [12] 王健安. 时变时滞耦合两个不同复杂网络的自适应广义同步. 物理学报, 2012, 61(2): 020509. doi: 10.7498/aps.61.020509
    [13] 霍铖宇, 庄建军, 黄晓林, 侯凤贞, 宁新宝. 基于Poincaré差值散点图的心率变异性分析方法研究. 物理学报, 2012, 61(19): 190506. doi: 10.7498/aps.61.190506
    [14] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征. 物理学报, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [15] 宋爱玲, 黄晓林, 司峻峰, 宁新宝. 符号动力学在心率变异性分析中的参数选择. 物理学报, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [16] 严碧歌, 赵婷婷. 应用多尺度化的基本尺度熵分析心率变异性. 物理学报, 2011, 60(7): 078701. doi: 10.7498/aps.60.078701
    [17] 曾长燕, 孙梅, 田立新. 基于自适应-脉冲控制方法实现时变耦合驱动-响应复杂网络的投影同步. 物理学报, 2010, 59(8): 5288-5292. doi: 10.7498/aps.59.5288
    [18] 李程, 汤大侃, 方勇, 孙锦涛, 丁光宏, Poon Chi-Sang, 吴国强. 心率变异性谱成分的非线性本质. 物理学报, 2009, 58(2): 1348-1352. doi: 10.7498/aps.58.1348
    [19] 黄晓林, 崔胜忠, 宁新宝, 卞春华. 心率变异性基本尺度熵的多尺度化研究. 物理学报, 2009, 58(12): 8160-8165. doi: 10.7498/aps.58.8160
    [20] 欧阳敏, 费 奇, 余明晖. 基于复杂网络的灾害蔓延模型评价及改进. 物理学报, 2008, 57(11): 6763-6770. doi: 10.7498/aps.57.6763
计量
  • 文章访问数:  10729
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 修回日期:  2019-06-13
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回