搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直腔面发射激光器低温光电特性

秦璐 任杰 许兴胜

引用本文:
Citation:

垂直腔面发射激光器低温光电特性

秦璐, 任杰, 许兴胜

Optoelectronic properties of vertical-cavity surface-emitting laser at low temperature

Qin Lu, Ren Jie, Xu Xing-Sheng
PDF
HTML
导出引用
  • 垂直腔面发射激光器通常被用作常温下850 nm波段短波长短距离光互连领域的激光光源, 多在室温下进行测试和使用. 在低温环境下垂直腔面发射激光器工作状态的表征是本文的研究重点. 我们表征了在不同温度下直流驱动垂直腔面发射激光器的发光光谱和10%占空比脉冲电流驱动垂直腔面发射激光器的发光光谱和功率-电流-电压曲线. 通过测试激光器在室温和10 K温度下性能的变化, 证明了现有的垂直腔面发射激光器在低温下仍能工作, 激光器在10 K低温环境下仍可以作为光互连的光源使用, 这一特点使得该激光器的应用范围可拓展至低温领域, 预示着垂直腔面发射激光器在低温光互连系统中具有应用价值.
    The vertical-cavity surface-emitting laser (VCSEL) is usually used as an 850nm short wavelength source for short-distance optical interconnection at normal temperature. In this study, the characterization of the VCSEL at low temperature was mainly studied. The laser spectra and the P-I-V curves are obtained with direct current and pulse current with 10% duty-cycle at different temperatures. It indicates that the VCSEL can work at 10K temperature environment. When the VCSEL laser is driven by direct current in a temperature range from 295 K to 10 K, the central wavelength of the laser is first red-shifted and then blue-shifted due to the change of environmental temperature and thermal effect on the device. With a pulsed-current driven source, the smaller the duty cycle, the less the heat generated by the device will be. The laser spectrum shows a blue-shift trend in the cooling process. The spectral width remains approximately stable in the cooling process. With temperature decreasing, the laser threshold current increases, and the lower the temperature, the larger the threshold current will be. It shows that the cavity mode and the gain spectrum shift with temperature changing. The cavity mode and the gain spectrum both shift to red with temperature increasing, and they shift to blue with temperature decreasing. But their shifting speeds are different. The mismatch between the cavity mode and the gain curve causes the device to need more energy for lasing. So the laser will work at a higher current driven at low temperature. The laser can work at low temperature as a stable light source. Therefore, the VCSEL has potential applications in optical interconnection system as a source at low temperature.
      通信作者: 许兴胜, xsxu@semi.ac.cn
    • 基金项目: 中国科学院先导A(批准号: XDA18040300),国家重点研发计划(批准号: 2016YFA0301200)和国家自然科学基金(批准号: 61575191,61627820, 61875252)资助的课题
      Corresponding author: Xu Xing-Sheng, xsxu@semi.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA18040300), the National Key Research and Development Program of China (Grant No. 2016YFA0301200) and the National Natural Science Foundation of China (Grant Nos. 61575191, 61627820, 61875252)
    [1]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [2]

    Suzuki N, Hatakeyama H, Yashiki K, Fukatsu K, Tokutome K, Akagawa T, Anan T, Tsuji M 2006 2006 Ieee Leos Annual Meeting Conference Proceedings, Vols 1 and 2 (New York: Ieee) pp508

    [3]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2001 15.6 gb/s transmission over 1km of next generation multimode fiber pp440-441

    [4]

    Wistey M A, Bank S R, Yuen H B, Goddard L L, Harris J S 2003 Electron. Lett. 39 1822Google Scholar

    [5]

    Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A, Ledentsov N N, Bimberg D 2011 Appl. Phys.Lett. 98 231106Google Scholar

    [6]

    Suzuki N, Hatakeyama H, Fukatsu K, Anan T, Yashiki K, Tsuji A 2006 Electron. Lett. 42 975Google Scholar

    [7]

    Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Jpn. J. Appl. Phys. Part 2 46 L512Google Scholar

    [8]

    Chang Y C, Wang C S, Coldren L A 2007 Electron. Lett. 43 1022Google Scholar

    [9]

    Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Ieee Photonics Tech. Lett. 19 1883Google Scholar

    [10]

    Westbergh P, Gustavsson J S, Haglund A, Sunnerud H, Larsson A 2008 Electron. Lett. 44 907Google Scholar

    [11]

    Valle A, Arizaleta M, Thienpont H, Panajotov K, Sciamanna M 2008 Appl. Phys. Lett. 93 131103Google Scholar

    [12]

    Mueller M, Hofmann W, Gruendl T, Horn M, Wolf P, Nagel R D, Roenneberg E, Boehm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar

    [13]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109Google Scholar

    [14]

    Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A, Joel A (edited by Choquette K D, Guenter J K) 2013 Vertical-Cavity Surface-Emitting Lasers XVII

    [15]

    Liu Y R, Davies A R, Ingham J D, Penty R V, White I H 2005 Ieee Photonics Technology Letters 17 2026Google Scholar

    [16]

    Tell B, Browngoebeler K F, Leibenguth R E, Baez F M, Lee Y H 1992 Applied Physics Letters 60 683Google Scholar

    [17]

    Andersson J Y, Lundqvist L 1991 Applied Physics Letters 59 857Google Scholar

    [18]

    Erdogan T, King O, Wicks G W, Hall D G, Anderson E H, Rooks M J 1992 Applied Physics Letters 60 1921Google Scholar

    [19]

    Lin H H, Lee S C 1985 Applied Physics Letters 47 839Google Scholar

    [20]

    Yong J C L, Rorison J M, White I H 2002 Ieee Journal of Quantum Electronics 38 1553Google Scholar

    [21]

    Lu B, Zhou P, Cheng J L, Malloy K J, Zolper J C 1994 Applied Physics Letters 65 1337Google Scholar

  • 图 1  (a)不同温度下直流驱动垂直腔面发射激光器光谱; (b)直流驱动下激光器发光光谱的中心波长随温度变化情况

    Fig. 1.  (a) The spectra of VCSEL at different temperatures with direct-current supply; (b) the variation of the center wavelength at different temperatures with direct current.

    图 2  室温条件下的增益谱线与腔膜模式匹配示意图

    Fig. 2.  Schematic diagram of cavity mode and spectrum of VCSEL.

    图 3  直流驱动下激光器发光光谱随温度的变化 (a) 激光光谱宽度随温度变化情况; (b) 激光强度随测试温度的变化

    Fig. 3.  The variation of spectral parameters at different temperatures with direct current. (a) The spectrum width varying with temperature; (b) the intensity varying with temperature.

    图 4  不同温度下10%占空比脉冲电流驱动器件特性测试结果. (a) 295 K条件下激光光谱; (b) 25 K条件下激射光谱; (c) 中心波长随温度的变化曲线; (d)光谱宽度随温度的变化曲线

    Fig. 4.  The result of the VCSEL driven by pulse current with 10% pulse duty cycle at different temperatures. (a) The lasing spectrum at 295 K; (b) the lasing spectrumat at 25 K; (c) the relationship between the center wavelength and temperature; (d) the relationship between the spectral width and temperature.

    图 5  温度对10%占空比脉冲驱动的激光器光电特性的影响 (a) 11 K温度下10%占空比脉冲电流驱动下功率-电流-电压曲线; (b) 295 K 温度下10%占空比脉冲电流驱动下的功率-电流-电压曲线; (c)阈值电流随温度的变化曲线; (d)微分电阻随温度的变化曲线.

    Fig. 5.  The opoto-electrical properties of the VCSEL driven by pulse current with 10% duty cycle at various temperatures. (a) 11 K; (b) 295 K; (c) the laser threshold current as function of temperature; (d) the differential resistance as function of temperature.

  • [1]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [2]

    Suzuki N, Hatakeyama H, Yashiki K, Fukatsu K, Tokutome K, Akagawa T, Anan T, Tsuji M 2006 2006 Ieee Leos Annual Meeting Conference Proceedings, Vols 1 and 2 (New York: Ieee) pp508

    [3]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2001 15.6 gb/s transmission over 1km of next generation multimode fiber pp440-441

    [4]

    Wistey M A, Bank S R, Yuen H B, Goddard L L, Harris J S 2003 Electron. Lett. 39 1822Google Scholar

    [5]

    Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A, Ledentsov N N, Bimberg D 2011 Appl. Phys.Lett. 98 231106Google Scholar

    [6]

    Suzuki N, Hatakeyama H, Fukatsu K, Anan T, Yashiki K, Tsuji A 2006 Electron. Lett. 42 975Google Scholar

    [7]

    Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Jpn. J. Appl. Phys. Part 2 46 L512Google Scholar

    [8]

    Chang Y C, Wang C S, Coldren L A 2007 Electron. Lett. 43 1022Google Scholar

    [9]

    Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M 2007 Ieee Photonics Tech. Lett. 19 1883Google Scholar

    [10]

    Westbergh P, Gustavsson J S, Haglund A, Sunnerud H, Larsson A 2008 Electron. Lett. 44 907Google Scholar

    [11]

    Valle A, Arizaleta M, Thienpont H, Panajotov K, Sciamanna M 2008 Appl. Phys. Lett. 93 131103Google Scholar

    [12]

    Mueller M, Hofmann W, Gruendl T, Horn M, Wolf P, Nagel R D, Roenneberg E, Boehm G, Bimberg D, Amann M C 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar

    [13]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109Google Scholar

    [14]

    Westbergh P, Safaisini R, Haglund E, Gustavsson J S, Larsson A, Joel A (edited by Choquette K D, Guenter J K) 2013 Vertical-Cavity Surface-Emitting Lasers XVII

    [15]

    Liu Y R, Davies A R, Ingham J D, Penty R V, White I H 2005 Ieee Photonics Technology Letters 17 2026Google Scholar

    [16]

    Tell B, Browngoebeler K F, Leibenguth R E, Baez F M, Lee Y H 1992 Applied Physics Letters 60 683Google Scholar

    [17]

    Andersson J Y, Lundqvist L 1991 Applied Physics Letters 59 857Google Scholar

    [18]

    Erdogan T, King O, Wicks G W, Hall D G, Anderson E H, Rooks M J 1992 Applied Physics Letters 60 1921Google Scholar

    [19]

    Lin H H, Lee S C 1985 Applied Physics Letters 47 839Google Scholar

    [20]

    Yong J C L, Rorison J M, White I H 2002 Ieee Journal of Quantum Electronics 38 1553Google Scholar

    [21]

    Lu B, Zhou P, Cheng J L, Malloy K J, Zolper J C 1994 Applied Physics Letters 65 1337Google Scholar

  • [1] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [2] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器. 物理学报, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [3] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [4] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [5] 颜森林. 半导体激光器混沌法拉第效应控制方法. 物理学报, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [6] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [7] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [8] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [9] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [10] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [11] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [12] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [13] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [14] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究. 物理学报, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [15] 颜森林, 汪胜前. 激光混沌串联同步以及混沌中继器系统理论研究. 物理学报, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [16] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [17] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [18] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [19] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  8261
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-07-03
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回