搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤偏振编码量子密钥分发系统荧光边信道攻击与防御

陈艳辉 王金东 杜聪 马瑞丽 赵家钰 秦晓娟 魏正军 张智明

引用本文:
Citation:

光纤偏振编码量子密钥分发系统荧光边信道攻击与防御

陈艳辉, 王金东, 杜聪, 马瑞丽, 赵家钰, 秦晓娟, 魏正军, 张智明

Eavesdropping and countermeasures for backflash side channel in fiber polarization-coded quantum key distribution

Chen Yan-Hui, Wang Jin-Dong, Du Cong, Ma Rui-Li, Zhao Jia-Yu, Qin Xiao-Juan, Wei Zheng-Jun, Zhang Zhi-Ming
PDF
HTML
导出引用
  • 实际安全性是目前量子密钥分发系统中最大的挑战. 在实际实现中, 接收单元的单光子探测器在雪崩过程的二次光子发射(反向荧光)会导致信息泄露. 目前, 已有研究表明该反向荧光会泄露时间和偏振信息并且窃听行为不会在通信过程中产生额外误码率, 在自由空间量子密钥分发系统中提出了利用反向荧光获取偏振信息的攻击方案, 但是在光纤量子密钥分发系统中暂未见报道. 本文提出了在光纤偏振编码量子密钥分发系统中利用反向荧光获取信息的窃听方案与减少信息泄露的解决方法, 在时分复用偏振补偿的光纤偏振编码量子密钥分发系统的基础上对该方案中窃听者如何获取密钥信息进行了理论分析. 实验上测量了光纤偏振编码量子密钥分发系统中反向荧光的概率为0.05, 并对本文提出的窃听方案中的信息泄露进行量化, 得出窃听者获取密钥信息的下限为2.5 × 10–4.
    Nowadays, the practical security of quantum key distribution (QKD) is the biggest challenge. In practical implementation, the security of a practical system strongly depends on its device implementation, and device defects will create security holes. The information leakage from a receiving unit due to secondary photon emission (backflash) is caused by a single-photon detector in the avalanche process. Now studies have shown that the backflash will leak the information about time and polarization and the eavesdropping behavior will not generate additional error rate in the communication process. An eavesdropping scheme obtaining time information by using backflash is proposed. Targeting this security hole for backflash leaking polarization information, an eavesdropping scheme for obtaining polarization information by using backflash is proposed in free-space QKD; however, it has not been reported in fiber QKD. In this study, the eavesdropping scheme and countermeasures for obtaining information by using backflash in fiber polarization-coded QKD is proposed. Since the polarization state of the fiber polarization-coded QKD system is easy to change, the scheme is proposed based on the time-division multiplexing polarization compensation fiber polarization-coded QKD system. In theory, the eavesdropper in this scheme obtaining the key information by using the backflash is theoretically deduced, and corrects the polarization change of the backflash by time-division multiplexing polarization compensation method, thus obtaining the accurate polarization information. The probability of backflash in the fiber polarization-coded QKD is measured to be 0.05, and the information leakage in the proposed eavesdropping scheme is quantified. The lower limit of the information obtained by the eavesdropper is 2.5 × 10–4. Due to the fact that the polarization compensation process increases invalid information in actual operation, the information obtained by the eavesdropper will be further reduced, thus obtaining the lower limit of information leakage. The results show that the backflash leaks a small amount of key information in a time-multiplexed polarization-compensated fiber polarization-coded QKD system. The wavelength characteristics of the backflash can be utilized to take corresponding defense methods. Backflash has a wide spectral range, and the count of backflash has a peak wavelength. So, tunable filters and isolators can be used to reduce backflash leakage, thereby reducing the information leakage.
      通信作者: 王金东, wangjindong@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771205)、广东省自然科学基金(批准号: 2015A030313388)和广东省科技计划(批准号: 2015B010128012, 2017KZ010101)资助的课题.
      Corresponding author: Wang Jin-Dong, wangjindong@m.scnu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61771205), the National Science Foundation of Guangdong Province, China (Grant No. 2015A030313388), and the Science and Technology Projects of Guangdong Province, China (Grant Nos. 2015B010128012, 2017KZ010101).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process 14 2959Google Scholar

    [3]

    岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪 2012 物理学报 61 184215

    Yue X L, WangJ D, Wei Z J, Guo B H, Liu S H 2012 Acta Phys. Sin. 61 184215

    [4]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H X, Zhen C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [5]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng G F, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [6]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process 17 225Google Scholar

    [8]

    Chen X B, SunY R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process 16 244Google Scholar

    [9]

    Xu G, Xiao K, Li Z, Niu X X, Ryan M 2019 Comput. Mater. Con. 58 809

    [10]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z 2015 Quantum Inf. Process 14 4297Google Scholar

    [11]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [12]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 212

    [13]

    Zhang H, Mao Y, Hang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 90307Google Scholar

    [14]

    Lo H 1999 Science 283 2050Google Scholar

    [15]

    Norbert L 2000 Phys. Rev. A 61 052304Google Scholar

    [16]

    Shor P W, Preskill J 2000 Appl. Phys. Lett. 85 441Google Scholar

    [17]

    Renner R 2005 Phys. Rev. A 72 012332Google Scholar

    [18]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 物理学报 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [19]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [20]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Appl. Phys. Lett. 85 1330Google Scholar

    [21]

    Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photon. 4 686Google Scholar

    [22]

    Wang J D, Wang H, Qin X J, Wei Z J, Zhang Z M 2016 Eur. Phys. J. D 70 1Google Scholar

    [23]

    Vadim M, Hjelme D R 2005 J. Mod. Opt. 52 691Google Scholar

    [24]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 73

    [25]

    Hadfield R H 2009 Nat. Photon. 3 696Google Scholar

    [26]

    Newman R 1955 Phys. Rev. 100 700Google Scholar

    [27]

    Chynoweth A G, Mckay K G 1956 Phys. Rev. 102 369Google Scholar

    [28]

    Childs P A, Eccleston W 1984 J. Appl. Phys. 55 4304Google Scholar

    [29]

    Waldschmidt M, Wittig S 1968 Nucl. Instrum. Meth. 64 189Google Scholar

    [30]

    Gautam D K, Khokle W S, Garg K B 1988 Solid State Electron 31 219Google Scholar

    [31]

    Lacaita A L, Zappa F, Bigliardi S, Manfredi M 1993 IEEE Trans. Electron Dev. 40 577

    [32]

    Lacaita A, Cova S, Spinelli A, Zappa F 1993 Appl. Phys. Lett. 62 606Google Scholar

    [33]

    Villa S, Lacaita A L, Pacelli A 1995 Phys. Rev. B 52 10993Google Scholar

    [34]

    Akil N, Kerns S E, Kerns D V, Charles J P 1998 Appl. Phys. Lett. 73 871Google Scholar

    [35]

    Kurtsiefer C, Zarda P, Mayer S, Weinfurter H 2001 J. Mod. Opt. 48 2039

    [36]

    Acerbi F, Tosi A, Zappa F 2013 IEEE Photon. Tech. L. 25 1778Google Scholar

    [37]

    Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G, Genovese M 2017 Light-Sci. Appl. 6 e16261Google Scholar

    [38]

    Marini L, Camphausen R, Xiong C, Eggleton B J, Palomba S 2016 Conference on Optical Fibre Technology Australian OSA, September, 2016pAW5C-4

    [39]

    Shi Y, Lim J Z J, Poh H S, Tan P K, Tan P A, Ling A, Kurtsiefer C 2017 Opt. Express 25 30388Google Scholar

    [40]

    Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T, Bourgoin J P, Jennewein T, Makarov V 2018 Opt. Express 26 21020Google Scholar

    [41]

    Chen J, Wu G, Li Y, Wu E, Zeng H 2007 Opt. Express 15 17928Google Scholar

    [42]

    Temporao G P 2009 New J. Phys. 11 045015Google Scholar

    [43]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

  • 图 1  在时分复用的光纤偏振编码QKD中利用反向荧光窃取偏振信息, 其中LD1–5为激光器; ATT1–7为可调谐光衰减器; PBS1–6为偏振分束器; PC1–8为手动偏振控制器; BS1–9为分束器; EPC1–4为电动偏振控制器; AMP为电压放大器; APD1–14为雪崩光电探测器; CIR为环形器

    Fig. 1.  Polarization information is obtained by backflash in a TDM fiber polarization coded QKD. LD1–5, laser; ATT1–7, variable optical attenuators; PBS1–6, polarization beam splitters; PC1–8, manual polarization-controllers; BS1–9, beam splitters; EPC1–4, electronic polarization-controllers; AMP, voltage amplifier; APD1–14, avalanche photodetector; CIR, circulator.

    图 2  探测光纤偏振编码QKD中携带有偏振信息的反向荧光概率 LD为激光器(QCL-102); ATT为衰减器(SM3301); APD1–3为单光子探测器(ID200, ID200, ID201); CLOCK为时钟信号源(DG645); OSC为示波器(WAVERUNNER 8404 M); 电线长度相同

    Fig. 2.  Probability detection of the backflash of the polarization-encoded QKD carrying polarization information. LD, laser (qcl-102); ATT, attenuator (SM3301); APD1–3, avalanche photodetector (ID200, ID200, ID201); CLOCK, clock (DG645); OSC, oscilloscope (WAVERUNNER 8404 M); the cables are the same length.

    图 3  Eve和Bob之间的符合计数直方图, 第三个峰为探测到的反向荧光光子数分布, 其他峰值为光学仪器的端面反射光

    Fig. 3.  Coincidence count histogram between Bob and Eve. The third peak is the detected backflash photon number distribution, and the other peaks denote the reflected light of the optical instrument.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process 14 2959Google Scholar

    [3]

    岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪 2012 物理学报 61 184215

    Yue X L, WangJ D, Wei Z J, Guo B H, Liu S H 2012 Acta Phys. Sin. 61 184215

    [4]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H X, Zhen C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [5]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng G F, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [6]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process 17 225Google Scholar

    [8]

    Chen X B, SunY R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process 16 244Google Scholar

    [9]

    Xu G, Xiao K, Li Z, Niu X X, Ryan M 2019 Comput. Mater. Con. 58 809

    [10]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z 2015 Quantum Inf. Process 14 4297Google Scholar

    [11]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [12]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 212

    [13]

    Zhang H, Mao Y, Hang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 90307Google Scholar

    [14]

    Lo H 1999 Science 283 2050Google Scholar

    [15]

    Norbert L 2000 Phys. Rev. A 61 052304Google Scholar

    [16]

    Shor P W, Preskill J 2000 Appl. Phys. Lett. 85 441Google Scholar

    [17]

    Renner R 2005 Phys. Rev. A 72 012332Google Scholar

    [18]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 物理学报 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [19]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [20]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Appl. Phys. Lett. 85 1330Google Scholar

    [21]

    Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photon. 4 686Google Scholar

    [22]

    Wang J D, Wang H, Qin X J, Wei Z J, Zhang Z M 2016 Eur. Phys. J. D 70 1Google Scholar

    [23]

    Vadim M, Hjelme D R 2005 J. Mod. Opt. 52 691Google Scholar

    [24]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 73

    [25]

    Hadfield R H 2009 Nat. Photon. 3 696Google Scholar

    [26]

    Newman R 1955 Phys. Rev. 100 700Google Scholar

    [27]

    Chynoweth A G, Mckay K G 1956 Phys. Rev. 102 369Google Scholar

    [28]

    Childs P A, Eccleston W 1984 J. Appl. Phys. 55 4304Google Scholar

    [29]

    Waldschmidt M, Wittig S 1968 Nucl. Instrum. Meth. 64 189Google Scholar

    [30]

    Gautam D K, Khokle W S, Garg K B 1988 Solid State Electron 31 219Google Scholar

    [31]

    Lacaita A L, Zappa F, Bigliardi S, Manfredi M 1993 IEEE Trans. Electron Dev. 40 577

    [32]

    Lacaita A, Cova S, Spinelli A, Zappa F 1993 Appl. Phys. Lett. 62 606Google Scholar

    [33]

    Villa S, Lacaita A L, Pacelli A 1995 Phys. Rev. B 52 10993Google Scholar

    [34]

    Akil N, Kerns S E, Kerns D V, Charles J P 1998 Appl. Phys. Lett. 73 871Google Scholar

    [35]

    Kurtsiefer C, Zarda P, Mayer S, Weinfurter H 2001 J. Mod. Opt. 48 2039

    [36]

    Acerbi F, Tosi A, Zappa F 2013 IEEE Photon. Tech. L. 25 1778Google Scholar

    [37]

    Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G, Genovese M 2017 Light-Sci. Appl. 6 e16261Google Scholar

    [38]

    Marini L, Camphausen R, Xiong C, Eggleton B J, Palomba S 2016 Conference on Optical Fibre Technology Australian OSA, September, 2016pAW5C-4

    [39]

    Shi Y, Lim J Z J, Poh H S, Tan P K, Tan P A, Ling A, Kurtsiefer C 2017 Opt. Express 25 30388Google Scholar

    [40]

    Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T, Bourgoin J P, Jennewein T, Makarov V 2018 Opt. Express 26 21020Google Scholar

    [41]

    Chen J, Wu G, Li Y, Wu E, Zeng H 2007 Opt. Express 15 17928Google Scholar

    [42]

    Temporao G P 2009 New J. Phys. 11 045015Google Scholar

    [43]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [3] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [4] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [5] 沈琦琦, 张毅, 王金东, 於亚飞, 魏正军, 张智明. 量子密钥分发系统中抗扰动偏振编码模式的实验研究. 物理学报, 2021, 70(18): 180302. doi: 10.7498/aps.70.20210749
    [6] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议. 物理学报, 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [7] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [8] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行, 刘丰. 基于偏振编码的副载波复用量子密钥分发研究. 物理学报, 2012, 61(24): 240306. doi: 10.7498/aps.61.240306
    [9] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [10] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [13] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [14] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [15] 林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪. 基于随机相位编码的确定性量子密钥分配. 物理学报, 2007, 56(10): 5796-5801. doi: 10.7498/aps.56.5796
    [16] 林一满, 梁瑞生, 路轶群, 路 洪, 郭邦红, 刘颂豪. 自动补偿高效的差分相位编码QKD系统. 物理学报, 2007, 56(7): 3931-3936. doi: 10.7498/aps.56.3931
    [17] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统. 物理学报, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [20] 唐志列, 李 铭, 魏正军, 卢 非, 廖常俊, 刘颂豪. 相位-偏振编码的量子保密通信系统的研究. 物理学报, 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
计量
  • 文章访问数:  7974
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-04-12
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回