-
对不同动量比下针栓喷注器的喷雾特性开展了试验研究. 以水为模拟介质, 分别通过增大氧化剂流量与减小燃料流量, 在0.16—0.99范围内增大局部动量比, 其中前者对应的总动量更高. 通过高速摄影结合激光相位多普勒技术(PDA)研究了不同工况下的喷雾边界、粒径分布及速度场. 结果表明, 工况变化直接影响喷雾形态, 并进一步影响其他喷雾特性. 对于同一局部动量比, 喷雾锥角一致, 但高总动量对应的喷雾下游范围更大. 随着外喷嘴流量增加, 喷雾上游出现空心区, 且其范围随局部动量比增大而增大. Sauter平均直径 (SMD)随局部动量比增加而增大, 变化范围则随总动量增高而扩大. 有空心区的喷雾SMD沿径向呈N形变化趋势, 喷雾外缘粒径最大; 实心喷雾SMD沿径向略有下降. 喷雾合速度取决于总动量, 合速度、轴向速度、径向速度均沿径向呈倒V形变化, 但轴向速度以下降趋势为主, 径向速度增加后缓慢减小或直接趋平. 局部动量比越高, 径向速度越高, 轴向速度越低. 此外, 空心区下方喷雾速度场由液膜主导.The spray characteristics of a liquid-liquid pintle injector under different momentum ratios are investigated experimentally in this paper. Water is used as a simulant medium for both the fuel and the oxidizer. By increasing the mass flow rate of the oxidizer or reducing the mass flow rate of the fuel, the local momentum ratio is increased from 0.16 to 0.99, wherein the responding total momentum obtained by the former throttling method is relatively high due to the higher mass flow rate of the fluid. The outer and inner spray boundary, droplet size distribution and the velocity field are studied by high-speed camera and phase Doppler anemometry (PDA). It is indicated that the spray pattern is affected by the operating conditions directly. The spray pattern is divided into the solid cone and the hollow-solid cone, generally. Furthermore, the spray pattern influences the other spray characteristics. Under the same local momentum ratio with different throttling methods, the spray angle is almost consistent, while the spray boundary in the far field is wider under the higher total momentum. With the increase of the mass flow rate of the outer injector, a hollow structure is generated in the near field of the spray, and its range expands with the increase of the local momentum ratio. The value of SMD increases with the local momentum ratio increasing. Under the same local momentum ratio, the variation range of SMD is wider under the higher total momentum. The variation trend of SMD in the radial direction differs from the spray pattern, too. The SMD of the hollow-solid spray displays as an " N” shape along the radial direction, and reaches its peak at the outer boundary. By contrast, the SMD of the solid spray decreases slightly in the radial direction and varies on a small scale. The value of the resultant velocity is determined by the total momentum, and the curves of all the resultant/axial/radial velocity display as an inverted " V” in the radial direction. Nevertheless, the trend of axial velocity in the radial direction is mainly decreasing, and the increasing stage only exists at the central spray. However, the radial velocity undergoes a slight decrease or levels off directly after reaching the peak. The higher the local momentum ratio, the larger the radial velocity is, while the lower the axial velocity. In addition, the velocity field below the hollow field is dominated by the liquid film, which is explained by analyzing the impinging process of the neighboring cloaks in this paper.
-
Keywords:
- pintle injector /
- methods of throttling the momentum ratio /
- hollow field /
- Sauter mean diameter
[1] Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 pp2000–3871
[2] [3] 岳春国, 李进贤, 冯喜平, 唐金兰 2008 世界科技研究与发展 30 609Google Scholar
Yue C G, Li J X, Feng X P, Tang J L 2008 World Sci-Tech R&D 30 609Google Scholar
[4] [5] 雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学: 技术科学 44 569
Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. Sin.: Tech. 44 569
[6] Sun Z Z, Jia Y, Zhang H 2013 Sci. China: Tech. Sci. 56 2702Google Scholar
[7] 俞南嘉, 鲍启林, 张洋, 戴健 2018 火箭推进 44 23Google Scholar
Yu N J, Bao Q L, Zhang Y, Dai J 2018 J. Rocket Propul. 44 23Google Scholar
[8] Heister S D, Nguyen T T, Karagozian A R 1988 26th Aerospace Sciences Meeting Reno, Nevada, January 11–14, 1988 pp88–100
[9] Son M, Yu K, Koo J, Kwon O C, Kim J S 2015 J. Therm. Sci. 24 37Google Scholar
[10] Cheng P, Li Q L, Xu S, Kang Z T 2017 Acta Astronaut. 138 145Google Scholar
[11] 成鹏 2018 博士学位论文 (长沙: 国防科技大学)
Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[12] Santoro R J, Merkle C L 1999 Main Chamber and Preburner Injector Technology Report 104
[13] Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar
[14] Son M, Radhakrishnan K, Koo J 2017 J. Propul. Power 33 858Google Scholar
[15] 方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 12 3004
Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 12 3004
[16] 方昕昕, 沈赤兵, 成鹏, 汪磊 2017 航空动力学报 32 1853
Fang X X, Shen C B, Cheng P, Wang L 2017 J. Aerosp. Power 32 1853
[17] 方昕昕, 沈赤兵 2017 航空动力学报 32 2291
Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291
[18] Fang X X, Shen C B 2017 Acta Astronaut. 136 369Google Scholar
[19] Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar
[20] 吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar
Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar
[21] 吴迎春, 吴学成, Saengkaew S, 姜淏予, 洪巧巧, Gréhan G, 岑可法 2013 物理学报 62 090703Google Scholar
Wu Y C, Wu X C, Saengkaew S, Jiang H Y, Hong Q Q, Gréhan G, Cen K F 2013 Acta Phys. Sin. 62 090703Google Scholar
[22] Zhang M, Xu M, Hung D 2014 Meas. Sci. Technol. 25 095204Google Scholar
[23] 何博, 何浩波, 丰松江, 聂万胜 2012 物理学报 61 148201Google Scholar
He B, He H B, Feng S J, Nie W S 2012 Acta Phys. Sin. 61 148201Google Scholar
[24] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君 2012 物理学报 61 064206Google Scholar
Jin D H, Liu W G, Chen X, Lu Q S, Zhao Y J 2012 Acta Phys. Sin. 61 064206Google Scholar
[25] 周康, 李清廉, 成鹏, 常一冰 2018 火箭推进 44 44Google Scholar
Zhou K, Li Q L, Cheng P, Chang Y B 2018 J. Rocket Propul. 44 44Google Scholar
[26] Sakaki K, Funahashi T, Nakaya S, Tsue M, Kanai R, Suzuki K, Inagawa T, Hiraiwa T 2018 Combust. Flame 194 115Google Scholar
[27] Kang Z, Li Q, Zhang J, Cheng P 2018 Acta Astronaut. 146 24Google Scholar
[28] Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar
[29] Urbán A, Zaremba M, Malý M, Józsa V, Jedelský J 2017 Int. J. Multiphase Flow 95 1Google Scholar
[30] Kim J S, Kim J S, Jung H 2007 5th Joint ASME/JSME Fluids Engineering Conference San Diego, California, USA, July 30–August 2, 2007 p37105
[31] 吴里银 2016 博士学位论文 (长沙: 国防科技大学)
Wu L Y 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[32] Otsu N 1979 IEEE Trans. Syst. Man & Cybernet SMC-9 62
[33] 张铭 2014 博士学位论文 (上海: 上海交通大学)
Zhang M 2014 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)
[34] Kang Z T, Wang Z G, Li Q L, Cheng P 2016 18th Annual Conference on Liquid Atomization and Spray Systems-Asia Chennai, India, November 6–9, 2016 p16
[35] Reba I 1966 Sci. Am. 214 84
[36] Allery C, Guerin S, Hamdouni A, Sakout A 2004 Mech. Res. Commun. 31 105Google Scholar
[37] 王振国 2012 液体火箭发动机燃烧过程建模与数值仿真 (北京: 国防工业出版社) 第42—43页
Wang Z G 2012 Modeling and Numerical Simulations of Internal Combustion Process of Liquid Rocket Engines (Beijing: National Defense Industry Press) pp42–43 (in Chinese)
-
表 1 针栓喷嘴器的主要结构参数
Table 1. Structural parameters of the pintle injector.
针栓头直径 D/mm 径向孔排数 nr 径向孔孔径 dt/mm 径向孔孔数 n 跳过距离 Ls/mm 环缝厚度 t/mm 10.4 2 1.1/0.9 6/6 10.4 0.5 表 2 试验工况
Table 2. Operating conditions.
试验
工况燃料流量/
g·s–1氧化剂流量/
g·s–1总动量比 (TMR) 局部动量比(LMR) gk1 502 59.3 0.1116 0.1550 gk2 503 120 0.1892 0.3662 gk3 505 149 0.2436 0.5143 gk4 505 209 0.3956 0.9283 gk5 224 59.4 0.1534 0.3714 gk6 172 58.2 0.2195 0.5743 gk7 134 60.1 0.3658 0.9891 表 3 PDA系统参数表
Table 3. Parameters of the PDA system.
参数类型 数值 激光波长/nm 514.5/488.0 发射光与接受光夹角/(º) 145 轴向速度范围/m·s–1 –7—45 径向速度范围/m·s–1 –28—46 粒径范围/μm 0.1—1000.0 发射端焦距/mm 1000 接收端焦距/mm 500 -
[1] Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 pp2000–3871
[2] [3] 岳春国, 李进贤, 冯喜平, 唐金兰 2008 世界科技研究与发展 30 609Google Scholar
Yue C G, Li J X, Feng X P, Tang J L 2008 World Sci-Tech R&D 30 609Google Scholar
[4] [5] 雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学: 技术科学 44 569
Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. Sin.: Tech. 44 569
[6] Sun Z Z, Jia Y, Zhang H 2013 Sci. China: Tech. Sci. 56 2702Google Scholar
[7] 俞南嘉, 鲍启林, 张洋, 戴健 2018 火箭推进 44 23Google Scholar
Yu N J, Bao Q L, Zhang Y, Dai J 2018 J. Rocket Propul. 44 23Google Scholar
[8] Heister S D, Nguyen T T, Karagozian A R 1988 26th Aerospace Sciences Meeting Reno, Nevada, January 11–14, 1988 pp88–100
[9] Son M, Yu K, Koo J, Kwon O C, Kim J S 2015 J. Therm. Sci. 24 37Google Scholar
[10] Cheng P, Li Q L, Xu S, Kang Z T 2017 Acta Astronaut. 138 145Google Scholar
[11] 成鹏 2018 博士学位论文 (长沙: 国防科技大学)
Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[12] Santoro R J, Merkle C L 1999 Main Chamber and Preburner Injector Technology Report 104
[13] Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar
[14] Son M, Radhakrishnan K, Koo J 2017 J. Propul. Power 33 858Google Scholar
[15] 方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 12 3004
Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 12 3004
[16] 方昕昕, 沈赤兵, 成鹏, 汪磊 2017 航空动力学报 32 1853
Fang X X, Shen C B, Cheng P, Wang L 2017 J. Aerosp. Power 32 1853
[17] 方昕昕, 沈赤兵 2017 航空动力学报 32 2291
Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291
[18] Fang X X, Shen C B 2017 Acta Astronaut. 136 369Google Scholar
[19] Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar
[20] 吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar
Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar
[21] 吴迎春, 吴学成, Saengkaew S, 姜淏予, 洪巧巧, Gréhan G, 岑可法 2013 物理学报 62 090703Google Scholar
Wu Y C, Wu X C, Saengkaew S, Jiang H Y, Hong Q Q, Gréhan G, Cen K F 2013 Acta Phys. Sin. 62 090703Google Scholar
[22] Zhang M, Xu M, Hung D 2014 Meas. Sci. Technol. 25 095204Google Scholar
[23] 何博, 何浩波, 丰松江, 聂万胜 2012 物理学报 61 148201Google Scholar
He B, He H B, Feng S J, Nie W S 2012 Acta Phys. Sin. 61 148201Google Scholar
[24] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君 2012 物理学报 61 064206Google Scholar
Jin D H, Liu W G, Chen X, Lu Q S, Zhao Y J 2012 Acta Phys. Sin. 61 064206Google Scholar
[25] 周康, 李清廉, 成鹏, 常一冰 2018 火箭推进 44 44Google Scholar
Zhou K, Li Q L, Cheng P, Chang Y B 2018 J. Rocket Propul. 44 44Google Scholar
[26] Sakaki K, Funahashi T, Nakaya S, Tsue M, Kanai R, Suzuki K, Inagawa T, Hiraiwa T 2018 Combust. Flame 194 115Google Scholar
[27] Kang Z, Li Q, Zhang J, Cheng P 2018 Acta Astronaut. 146 24Google Scholar
[28] Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar
[29] Urbán A, Zaremba M, Malý M, Józsa V, Jedelský J 2017 Int. J. Multiphase Flow 95 1Google Scholar
[30] Kim J S, Kim J S, Jung H 2007 5th Joint ASME/JSME Fluids Engineering Conference San Diego, California, USA, July 30–August 2, 2007 p37105
[31] 吴里银 2016 博士学位论文 (长沙: 国防科技大学)
Wu L Y 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[32] Otsu N 1979 IEEE Trans. Syst. Man & Cybernet SMC-9 62
[33] 张铭 2014 博士学位论文 (上海: 上海交通大学)
Zhang M 2014 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)
[34] Kang Z T, Wang Z G, Li Q L, Cheng P 2016 18th Annual Conference on Liquid Atomization and Spray Systems-Asia Chennai, India, November 6–9, 2016 p16
[35] Reba I 1966 Sci. Am. 214 84
[36] Allery C, Guerin S, Hamdouni A, Sakout A 2004 Mech. Res. Commun. 31 105Google Scholar
[37] 王振国 2012 液体火箭发动机燃烧过程建模与数值仿真 (北京: 国防工业出版社) 第42—43页
Wang Z G 2012 Modeling and Numerical Simulations of Internal Combustion Process of Liquid Rocket Engines (Beijing: National Defense Industry Press) pp42–43 (in Chinese)
计量
- 文章访问数: 10513
- PDF下载量: 177
- 被引次数: 0