搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TM@Cu12N12团簇磁性第一性原理研究

阴敏 张敏 吕瑾 武海顺

引用本文:
Citation:

TM@Cu12N12团簇磁性第一性原理研究

阴敏, 张敏, 吕瑾, 武海顺

First-principles study of magnetism of TM@Cu12N12 nanoclusters

Yin Min, Zhang Min, Lü Jin, Wu Hai-Shun
PDF
HTML
导出引用
  • 采用密度泛函理论下的广义梯度近似方法对团簇TM@Cu12N12 (TM = Mn,, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)的结构稳定性、磁性及磁各向异性能进行了系统的理论研究. 发现由于TM—Cu 和 Cu—N键的出现, 不同过渡金属原子(TM)掺杂二十面体Cu13N12 (ICO)团簇的中心原子可以有效提高TM@Cu12N12的稳定性; N原子的加入使Cu团簇的磁性显著提高, 且不同的TM掺杂有效改善了Cu团簇内部的磁性环境; 3d原子的掺杂使团簇的磁性得到进一步提升, 4d, 5d原子的掺杂虽对提高团簇轨道磁矩无明显效果, 但Rh和Pt原子的掺入使其磁各向异性能显著增大, 提高了团簇的磁稳定性. 结果表明对TM@Cu12N12的掺杂改性基本可以达到磁性调控目的.
    The stability of structure, spin, orbital magnetic moment and magnetic anisotropy energy of TM@Cu12N12 (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) are systematically investigated within the framework of the generalized gradient approximation with on-site coulomb repulsion density-functional theory (DFT-GGA+U). In the orbital moment and magnetic anisotropy energy (MAE) computation procedure, the spin-orbit coupling is considered and implemented. In this article, we mainly focus on the structure stability and tunable magnetism of the TM atom (Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) substituting the centre atom of icosahedron (ICO) Cu13N12 cluster, finally disclose the physics origin of the structure stability, change magnetism and larger MAE. The results show that the different TM atom doping makes the ICO structure of Cu13N12 cluster appears a tiny deformation. The stabilities of the clusters are evidently enhanced due to the formation of Cu—N and Cu—TM bond. In addition, the N-capped clusters more prefer to present a larger magnetic moment than the pure Cu13 one. The magnetic environment of clusters is improved to varying degrees by doping different TM (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) atoms, which endows TM@Cu12N12 clusters with various magnetic properties. For instance, the doping of 3d atoms further enhances the spin magnetic moment of the clusters, the Mn, Fe and Co atoms replacing the centre atom of the ICO Cu13N12 generate 35, 32 and 33 giant moments, respectively. In light of the doping of 4d, 5d transition metal atoms, the orbital moments of the TM@Cu12N12 clusters do not increase evidently, but the MAE remarkably strengthens for the doping of Rh and Pt atoms, the MAE values reach to 15.34 meV/atom and 6.76 meV/atom for Rh@Cu12N12 and Pt@Cu12N12, respectively. The tunable magnetism of TM@Cu12N12 cluster provides promising applications in spintronics.
      通信作者: 吕瑾, lvjin_sxnu@163.com
    • 基金项目: 国家自然科学基金(批准号: 21301112)和教育部博士点基金(批准号: 20131404120001)资助的课题
      Corresponding author: Lü Jin, lvjin_sxnu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21301112) and the Ph. D. Program Foundation of Ministry of China (Grant No. 20131404120001)
    [1]

    Ohno H 1998 Science 281 951Google Scholar

    [2]

    王凯, 谢泉, 范梦慧 2017 磁性材料及器件 48 58Google Scholar

    Wang K, Xie Q, Fan M H 2017 J. Magn. Mater. Devices 48 58Google Scholar

    [3]

    Baik J M, Jang H W, Kim J K, Lee J L 2003 Appl. Phys. Lett. 82 583Google Scholar

    [4]

    Dhar S, Brandt O, Trampert A, Däweritz L, Friedland K J, Ploog K H, Keller J, Beschoten B, Güntherodt G 2003 Appl. Phys. Lett. 82 2077Google Scholar

    [5]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pashkova N V, Shlensky A A, Pearton S J, Overberg M E, Abernathy C R, Zavada J M, Wilson R G 2003 J. Appl. Phys. 93 5388Google Scholar

    [6]

    Liu H X, Wu S Y, Singh R K, Gu L, Smith D J, Newman N, Dilley N R, Montes L, Simmonds M B 2004 Appl. Phys. Lett. 85 4076Google Scholar

    [7]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404Google Scholar

    [8]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504Google Scholar

    [9]

    Lee J H, Choi I H, Shin S, Lee S, Lee J, Whang C, Lee S C, Lee K R, Baek J H, Chae K H, Song J 2007 Appl. Phys. Lett. 90 032504Google Scholar

    [10]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366Google Scholar

    [11]

    Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G, Wu Q Y 2006 Appl. Phys. Lett. 89 062505Google Scholar

    [12]

    Ling W, Dong D, Shi-Jian W, Zheng-Quan Z 2015 J. Phys. Chem. Solids 76 10Google Scholar

    [13]

    Yuan J, Yang B, Li G, Si Y, Wang S, Zhang S, Chen H 2015 Comput. Mater. Sci. 102 213Google Scholar

    [14]

    Chaves A S, Rondina G G, Piotrowski M J, Da Silva J L F 2015 Comput. Mater. Sci. 98 278Google Scholar

    [15]

    Datta S, Banerjee R, Mookerjee A 2015 J. Chem. Phys. 142 024309Google Scholar

    [16]

    Yin M, Bai X, Lü J, Wu H S 2019 J. Magn. Magn. Mater. 481 203Google Scholar

    [17]

    Yuan H K, Chen H, Kuang A L, Tian C L, Wang J Z 2013 J. Chem. Phys. 139 034314Google Scholar

    [18]

    Bai X, Lü J, Zhang F Q, Jia J F, Wu H S 2018 J. Magn. Magn. Mater. 451 360Google Scholar

    [19]

    Piotrowski M J, Piquini P, Da Silva J L F 2010 Phys. Rev. B 81 155446Google Scholar

    [20]

    Chaves A S, Rondina G G, Piotrowski M J, Tereshchuk P, Da Silva J L 2014 J. Phys. Chem. A 118 10813Google Scholar

    [21]

    Hakkinen H, Moseler M, Landman U 2002 Phys. Rev. Lett. 89 033401Google Scholar

    [22]

    Datta S, Saha-Dasgupta T 2013 J. Phys.: Condens. Matter 25 225302Google Scholar

    [23]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [24]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

    [25]

    金安定, 刘淑薇, 吴勇 1999 高等无机化学简明教程(南京: 南京师范大学出版社)第305页

    Jin A D, Liu S W, Wu Y 1999 Concise Course on Advanced Inorganic Chemistry (Nanjing: Nanjing Normal University Press) p305 (in Chinese)

    [26]

    Wang D S, Wu R, Freeman A J 1993 Phys. Rev. B 47 14932Google Scholar

    [27]

    Wang P, Jiang X, Hu J, Huang X M, Zhao J J, Ahuja R 2017 J. Phys.: Condens. Matter 29 435802Google Scholar

    [28]

    Hu J, Wang P, Zhao J J, Wu R Q 2018 Advances in Physics: X. 3 1432415Google Scholar

  • 图 1  利用GGA + U方法计算Cu13和Ru13团簇在设置不同Ueff值下拥有不同初始结构时的相对稳定性和总自旋磁矩

    Fig. 1.  Using GGA + U method to calculate the relative stability and total spin magnetic moment of Cu13 and Ru13 clusters with different initial structures under different Ueff values.

    图 2  Cu13N12和TM@Cu12N12(TM = Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt)团簇结构图

    Fig. 2.  The geometry structures of Cu13N12 and TM@ Cu12N12 (TM = Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt) clusters.

    图 3  (a) TM@Cu12N12总杂化趋势与平均Cu—N键长的关系; (b) Cu2和CuN二聚体HOMO, LUMO图

    Fig. 3.  (a) The relationship between total hybridization index of TM@Cu12N12 and Cu—N average bond length in clusters; (b) the HOMO and LUMO of Cu2 and CuN dimers.

    图 4  Cu-TM (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)二聚体平均结合能

    Fig. 4.  The average binding energy of Cu-TM (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) dimers.

    图 5  (a) Cu—Cu, Cu—TM(TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)键长; (b) 结构表面N—N, N—Cu原子间距

    Fig. 5.  (a) Bond lengths of Cu—Cu, Cu—TM (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt); (b) atomic distance of N—N, N—Cu on cluster surface.

    图 6  (a) TM@Cu12N12团簇总磁矩; (b)团簇内部Cu—N平均键长

    Fig. 6.  Total magnetic moments (a) and average Cu—N bond lengths (b) of TM@Cu12N12 clusters.

    图 7  TM@Cu12N12团簇自旋密度图(isosurfaces level = 0.024)

    Fig. 7.  The plot of spin density isosurfaces of TM@Cu12N12 clusters (the isosurfaces level set as 0.024).

    图 8  Ni@Cu12N12(a1)—(a3), Ru@Cu12N12(b1)—(b3)及Rh@Cu12N12(c1)—(c3)团簇的结构和ELF图

    Fig. 8.  The plot of structures and ELF for Ni@Cu12N12 (a1)−(a3), Ru@Cu12N12 (b1)−(b3) and Rh@Cu12N12 (c1)−(c3) clusters.

    图 9  TM@Cu12N12团簇分波态密度(PDOS)

    Fig. 9.  The PDOS of TM@Cu12N12 clusters.

    图 10  TM@Cu12N12团簇固有轨道角动量和轨道磁矩(a)及每个团簇的MAE(b)

    Fig. 10.  The orbital angular momentum, orbital moment (a) and MAE (b) of TM@Cu12N12 clusters.

    图 11  TM@Cu12N12(TM = Rh, Pt, Ni)团簇中原子的d轨道的分波态密度(PDOS)

    Fig. 11.  PDOS of Rh (a), Pt (b), Ni (c) atoms in Rh@Cu12N12(a), Pt@Cu12N12(b), Ni@Cu12N12(c) clusters, respectively

    表 1  Cu13以及TM@Cu12N12团簇的结合能(Eb)和杂化指数(Hkl)

    Table 1.  The binding energies and hybridization index of Cu13 and TM@Cu12N12 clusters.

    ClustersBinding energy
    Eb/eV·atom–1
    Hybridization index
    hsphsdhpdHtol
    Cu131.500.060.210.140.40
    Mn@Cu12N121.580.090.200.150.43
    Fe@Cu12N121.580.120.210.170.50
    Co@Cu12N121.620.100.190.160.45
    Ni@Cu12N121.630.170.270.240.68
    Cu13N121.560.120.200.190.51
    Ru@Cu12N121.640.250.290.260.80
    Rh@Cu12N121.670.210.280.250.74
    Pd@Cu12N121.600.160.250.230.65
    Ir@Cu12N121.700.220.300.230.75
    Pt@Cu12N121.690.210.260.230.70
    下载: 导出CSV

    表 2  TM@Cu12N12团簇的原子平均Bader电荷分布和原子平均局域磁矩

    Table 2.  The excess Bader charge and local magnetic moments of atoms in TM@Cu12N12 clusters.

    ClutersBader charge/eLocal magnetic moments/μB
    TMCuNTMCuN
    Mn@Cu12N120.290.25–0.273.490.391.50
    Fe@Cu12N120.090.27–0.282.730.311.44
    Co@Cu12N12–0.150.29–0.281.690.391.49
    Ni@Cu12N12–0.330.31–0.280.100.271.40
    Cu13N12–0.190.30–0.280.050.291.43
    Ru@Cu12N12–0.590.35–0.300.290.271.33
    Rh@Cu12N12–0.640.35–0.300.090.311.42
    Pd@Cu12N12–0.620.33–0.280.030.291.41
    Ir@Cu12N12–0.940.37–0.290.140.301.34
    Pt@Cu12N12–0.920.36–0.290.100.311.41
    下载: 导出CSV
  • [1]

    Ohno H 1998 Science 281 951Google Scholar

    [2]

    王凯, 谢泉, 范梦慧 2017 磁性材料及器件 48 58Google Scholar

    Wang K, Xie Q, Fan M H 2017 J. Magn. Mater. Devices 48 58Google Scholar

    [3]

    Baik J M, Jang H W, Kim J K, Lee J L 2003 Appl. Phys. Lett. 82 583Google Scholar

    [4]

    Dhar S, Brandt O, Trampert A, Däweritz L, Friedland K J, Ploog K H, Keller J, Beschoten B, Güntherodt G 2003 Appl. Phys. Lett. 82 2077Google Scholar

    [5]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pashkova N V, Shlensky A A, Pearton S J, Overberg M E, Abernathy C R, Zavada J M, Wilson R G 2003 J. Appl. Phys. 93 5388Google Scholar

    [6]

    Liu H X, Wu S Y, Singh R K, Gu L, Smith D J, Newman N, Dilley N R, Montes L, Simmonds M B 2004 Appl. Phys. Lett. 85 4076Google Scholar

    [7]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404Google Scholar

    [8]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504Google Scholar

    [9]

    Lee J H, Choi I H, Shin S, Lee S, Lee J, Whang C, Lee S C, Lee K R, Baek J H, Chae K H, Song J 2007 Appl. Phys. Lett. 90 032504Google Scholar

    [10]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366Google Scholar

    [11]

    Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G, Wu Q Y 2006 Appl. Phys. Lett. 89 062505Google Scholar

    [12]

    Ling W, Dong D, Shi-Jian W, Zheng-Quan Z 2015 J. Phys. Chem. Solids 76 10Google Scholar

    [13]

    Yuan J, Yang B, Li G, Si Y, Wang S, Zhang S, Chen H 2015 Comput. Mater. Sci. 102 213Google Scholar

    [14]

    Chaves A S, Rondina G G, Piotrowski M J, Da Silva J L F 2015 Comput. Mater. Sci. 98 278Google Scholar

    [15]

    Datta S, Banerjee R, Mookerjee A 2015 J. Chem. Phys. 142 024309Google Scholar

    [16]

    Yin M, Bai X, Lü J, Wu H S 2019 J. Magn. Magn. Mater. 481 203Google Scholar

    [17]

    Yuan H K, Chen H, Kuang A L, Tian C L, Wang J Z 2013 J. Chem. Phys. 139 034314Google Scholar

    [18]

    Bai X, Lü J, Zhang F Q, Jia J F, Wu H S 2018 J. Magn. Magn. Mater. 451 360Google Scholar

    [19]

    Piotrowski M J, Piquini P, Da Silva J L F 2010 Phys. Rev. B 81 155446Google Scholar

    [20]

    Chaves A S, Rondina G G, Piotrowski M J, Tereshchuk P, Da Silva J L 2014 J. Phys. Chem. A 118 10813Google Scholar

    [21]

    Hakkinen H, Moseler M, Landman U 2002 Phys. Rev. Lett. 89 033401Google Scholar

    [22]

    Datta S, Saha-Dasgupta T 2013 J. Phys.: Condens. Matter 25 225302Google Scholar

    [23]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [24]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

    [25]

    金安定, 刘淑薇, 吴勇 1999 高等无机化学简明教程(南京: 南京师范大学出版社)第305页

    Jin A D, Liu S W, Wu Y 1999 Concise Course on Advanced Inorganic Chemistry (Nanjing: Nanjing Normal University Press) p305 (in Chinese)

    [26]

    Wang D S, Wu R, Freeman A J 1993 Phys. Rev. B 47 14932Google Scholar

    [27]

    Wang P, Jiang X, Hu J, Huang X M, Zhao J J, Ahuja R 2017 J. Phys.: Condens. Matter 29 435802Google Scholar

    [28]

    Hu J, Wang P, Zhao J J, Wu R Q 2018 Advances in Physics: X. 3 1432415Google Scholar

  • [1] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [2] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究. 物理学报, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [3] 李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦. 低聚壳聚糖几何结构和物理化学属性的理论研究. 物理学报, 2014, 63(7): 076102. doi: 10.7498/aps.63.076102
    [4] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [5] 秦健萍, 梁瑞瑞, 吕瑾, 武海顺. ComAln(m+n ≤ 6)团簇的结构和磁性理论研究. 物理学报, 2014, 63(13): 133102. doi: 10.7498/aps.63.133102
    [6] 吕瑾, 秦健萍, 武海顺. ConAl (n= 18)合金团簇结构和磁性质研究. 物理学报, 2013, 62(5): 053101. doi: 10.7498/aps.62.053101
    [7] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [8] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [9] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [10] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [11] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [12] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [13] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [14] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [15] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究. 物理学报, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [16] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [17] 陈宣, 彭霞, 邓开明, 肖传云, 胡凤兰, 谭伟石. 笼状Au20内掺M13(M=Fe,Ti)团簇磁性的密度泛函计算研究. 物理学报, 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [18] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [19] 雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨 致, 罗有华. 利用密度泛函理论研究BnNi(n≤5)小团簇的结构和磁性. 物理学报, 2007, 56(8): 4484-4490. doi: 10.7498/aps.56.4484
    [20] 陈 宣, 卢功利, 唐春梅, 邓开明, 谭伟石. M2Sn17(M=Ni,Mn)及其阴离子的几何结构、电子结构和磁性的计算研究. 物理学报, 2007, 56(9): 5216-5220. doi: 10.7498/aps.56.5216
计量
  • 文章访问数:  9641
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-15
  • 修回日期:  2019-08-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回