搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重费米子材料与物理

谢武 沈斌 张勇军 郭春煜 许嘉诚 路欣 袁辉球

引用本文:
Citation:

重费米子材料与物理

谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球

Heavy fermion materials and physics

Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu
PDF
HTML
导出引用
  • 作为典型的强关联电子体系, 重费米子材料表现出丰富的量子基态, 如反铁磁序、铁磁序、非常规超导、非费米液体、自旋液体、轨道序和拓扑态等. 相比其他强关联电子体系, 重费米子体系的特征能量尺度低, 可以通过压力、磁场或掺杂等参量对不同量子态进行连续调控, 因而是研究量子相变、超导及其相互作用的理想体系. 本文简要介绍重费米子研究的发展历史和国内外研究现状, 概述几类典型的重费米子材料, 并简单阐述重费米子超导、量子相变和强关联拓扑态等前沿科学问题.
    As typical examples of strongly correlated electron systems, heavy fermion materials exhibit diverse quantum ground states such as antiferromagnetic order, ferromagnetic order, non-Fermi-liquid phases, unconventional superconductivity, quantum spin liquids, orbital order and topological order. In contrast to other strongly correlated electron systems, heavy fermion systems have relatively small characteristic energy scales, which allows different quantum states to be tuned continuously by using external parameters such as pressure, magnetic field and chemical doping. Heavy fermion materials thus serve as ideal systems for studying quantum phase transitions, superconductivity and their interplay. In this review, we briefly introduce the history of the field of heavy fermions and the current status both in China and in other countries. The properties of several representative heavy fermion systems are summarized, and some frontier scientific issues in this field are discussed, in particular, concerning heavy fermion superconductors, quantum phase transitions and exotic topological states in strongly correlated electron systems.
      通信作者: 袁辉球, hqyuan@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0303100,2016YFA0300202)、国家自然科学基金(批准号:U1632275、11674279)、浙江省自然科学基金杰出青年项目(批准号:LR18A04001)和科学挑战专项(批准号:TZ2016004)资助的课题.
      Corresponding author: Yuan Hui-Qiu, hqyuan@zju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303100, 2016YFA0300202), the National Natural Science Foundation of China (Grant Nos. U1632275, 11674279), the Young Scientists Fund of the Natural Science Foundation of Zhejiang Province, China (Grant No. LR18A04001), and the Science Challenge Project of China (Grant No. TZ2016004)
    [1]

    Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar

    [2]

    Grewe N 1984 Solid State Commun. 50 19Google Scholar

    [3]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar

    [4]

    Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, Monthoux P 2001 J. Phys. Condens. Matter 1 378

    [5]

    Hegger H, Petrovic C, Moshopoulou E G, Sarrao J L, Fisk Z, Thompson J D 2000 Phys. Rev. Lett. 84 4986Google Scholar

    [6]

    Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z, Thompson J D 2001 Europhys. Lett. 53 354Google Scholar

    [7]

    Steglich F, Gegenwart P, Geibel C, Helfrich R, Hellmann P, Lang M, Link A, Modler R, Sparn G, Büttgen N, Loidl A 1996 Physica B 223-224 1

    [8]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104Google Scholar

    [9]

    Ueda K, Kitaoka Y, Yamada H, Kohori Y, Kohara Y, Asayama K 1987 J. Phys. Soc. Jpn. 56 867Google Scholar

    [10]

    Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q M, Yuan H Q 2018 Proc. Natl. Acad. Sci. 115 5343Google Scholar

    [11]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar

    [12]

    Ikeda H, Suzuki M, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar

    [13]

    Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar

    [14]

    Trovarelli O, Weiden M, Müller-Reisener R, Gómez-Berisso M, Gegenwart P, Deppe M, Geibel C, Sereni J G, Steglich F 1997 Phys. Rev. B 56 678Google Scholar

    [15]

    Bruls G, Wolf B, Finsterbusch D, Thalmeier P, Kouroudis I, Sun W, Assmus W, Lüthi B 1994 Phys. Rev. Lett. 72 1754Google Scholar

    [16]

    Steglich F 2005 J. Phys. Soc. Jpn. 74 167Google Scholar

    [17]

    Jaccard D, Behnia, Sierro J 1992 Phys. Lett. A 163 475Google Scholar

    [18]

    Grosche F M, Julian S R, Mathur N D, Lonzarich G G 1996 Physica B 223-224 50Google Scholar

    [19]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [20]

    Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L, Fisk Z 1996 Phys. Rev. B 53 8241Google Scholar

    [21]

    Ren Z, Pourovskii L V, Giriat G, Lapertot G, Georges A, Jaccard D 2014 Phys. Rev. X 4 031055

    [22]

    Gegenwart P, Kromer F, Lang M, Sparn G, Geibel C, Steglich F 1999 Phys. Rev. Lett. 82 1293Google Scholar

    [23]

    Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar

    [24]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar

    [25]

    Knebel G, Braithwaite D, Canfield P C, Lapertot G, Flouquet J 2001 Phys. Rev. B 65 024425Google Scholar

    [26]

    Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar

    [27]

    Millis A J 1993 Phys. Rev. B 48 7183Google Scholar

    [28]

    Sarrao J L, Thompson J D 2007 J. Phys. Soc. Jpn. 76 051013Google Scholar

    [29]

    Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, Follath R 2008 Phys. Rev. B 77 155128Google Scholar

    [30]

    Cornelius A L, Arko A J, Sarrao J L, Hundley M F, Fisk Z 2000 Phys. Rev. B 62 14181Google Scholar

    [31]

    Hall D, Palm E C, Murphy T P, Tozer S W, Petrovic C, Eliza M R, Lydia P, Li C Q H, Alver U, Goodrich R G, Sarrao J L, Pagliuso P G, Wills J M, Fisk Z 2001 Phys. Rev. B 64 064506Google Scholar

    [32]

    Akbari A, Thalmeier P 2012 Phys. Rev. B 86 134516Google Scholar

    [33]

    An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M, Machida K 2010 Phys. Rev. Lett. 104 037002Google Scholar

    [34]

    Bianchi A, Movshovich R, Vekhter I, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 257001Google Scholar

    [35]

    Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z F, Pang G M, Shang T, Zhang J L, Lee H, Park T, Jaime M, Thompson J D, Steglich F, Si Q M, Yuan H Q 2015 Proc. Natl. Acad. Sci. 112 673Google Scholar

    [36]

    Bianchi A, Movshovich R, Jaime M, Thompson J D, Pagliuso P G, Sarrao J L 2001 Phys. Rev. B 64 220504Google Scholar

    [37]

    Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, Thompson J D 2003 Phys. Rev. B 67 020506Google Scholar

    [38]

    Kratochvilova M, Dusek M, Uhlirova K, Rudajevova A, Prokleska J, Vondrackova B, Custers J, Sechovsky V 2014 J. Cryst. Growth 397 47Google Scholar

    [39]

    Kratochvílová M, Prokleška J, Uhlířová K, Tkáč V, Dušek M, Sechovský V, Custers J 2015 Sci. Rep. 5 15904Google Scholar

    [40]

    Rossi D, Marazza R, Ferro R 1979 J. Less-Common Met. 66 P17Google Scholar

    [41]

    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar

    [42]

    Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar

    [43]

    Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C, Coleman P 2003 Nature 424 524Google Scholar

    [44]

    Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. 107 14547Google Scholar

    [45]

    Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, von Löhneysen H, Bucher E, Ramazashvili R, Coleman P 2000 Nature 407 351Google Scholar

    [46]

    Si Q, Steglich F 2010 Science 329 1161Google Scholar

    [47]

    Schuberth E, Tippmann M, Steinke L, Lausberg S, Brando S, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar

    [48]

    Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar

    [49]

    Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar

    [50]

    Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar

    [51]

    Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar

    [52]

    Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar

    [53]

    Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar

    [54]

    Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1411Google Scholar

    [55]

    Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar

    [56]

    Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica (Amsterdam) 326B 414

    [57]

    Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar

    [58]

    Huxley A, Rodière P, Paul D M, van Dijk N, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar

    [59]

    Hayden S M, Taillefer L, Vettier C, Flouquet J 1992 Phys. Rev. B 46 8675

    [60]

    Bernhoeft N, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y, Komatsubara T 1998 Phys. Rev. Lett. 81 4244Google Scholar

    [61]

    Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D, louquet J 2000 Nature 406 587Google Scholar

    [62]

    Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouguet J, Brison J P, Lhotel E, Paulsen C 2001 Nature 413 613Google Scholar

    [63]

    Huy N T, Gasparini A, de Nijs D E, Huang Y, Klaasse J C P, Gortenmulder T, de Visser A, Hamann A, Görlach T, von Löhneysen H 2007 Phys. Rev. Lett. 99 067006Google Scholar

    [64]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [65]

    Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar

    [66]

    Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar

    [67]

    Bauer E D, Frederick N A, Ho P C, Zapf V S, Maple M B 2002 Phys. Rev. B 65 100506Google Scholar

    [68]

    Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar

    [69]

    Crro N J, Caldwell T, Bauer E D, Morales L A, Graf M J, Bang Y, Balatsky A V, Thompson J D, Sarrao J L 2005 Nature 434 622Google Scholar

    [70]

    杨义峰, 李宇 2015 物理学报 64 217401Google Scholar

    Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar

    [71]

    Ormeno R J, Sibley A, Gough C E 2002 Phys. Rev. Lett. 88 047005Google Scholar

    [72]

    Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R, Onuki Y 2001 Phys. Rev. Lett. 87 057002Google Scholar

    [73]

    Luke G M, Keren A, Le L P, Wu W D, Uemura Y J 1993 Phys. Rev. Lett. 71 1466Google Scholar

    [74]

    Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Michida K 2013 J. Phys. Soc. Jpn. 82 113707Google Scholar

    [75]

    Bauer E, Hilscher G, Michor H, Paul Ch, Scheidt E W, Gribanov A, Seropegin Yu, Noel H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003Google Scholar

    [76]

    Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar

    [77]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar

    [78]

    Bonalde I, Bramer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002Google Scholar

    [79]

    Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn 75 013709Google Scholar

    [80]

    Yogi M, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2004 Phys. Rev. Lett. 93 027003Google Scholar

    [81]

    Mukuda H, Nishide S, Harada A, Iwasaki K, Yogi M, Yashima M, Kitaoka Y, Tsujino M, Takeuchi T, Settai R, Onuki Y, Bauer E, Itoh KM, Haller E E 2009 J. Phys. Soc. Jpn. 78 014705Google Scholar

    [82]

    Kimura N, Ito K, Aoki H, Uji S, Terashima T 2007 Phys. Rev. Lett. 98 197001Google Scholar

    [83]

    Settai R, Miyauchi Y, Takeuchi T, Levy F, Sheikin I, Onuki Y 2008 J. Phys. Soc. Jpn. 77 073705Google Scholar

    [84]

    Dressel M 2007 Naturwissenschaften 94 527Google Scholar

    [85]

    Steglich F 2014 Phil. Mag. 94 3259Google Scholar

    [86]

    Pfleiderer C, Huxley A D 2002 Phys. Rev. Lett. 89 147005Google Scholar

    [87]

    Slooten E, Naka T, Gasparini A, Huang Y K, de Visser A 2009 Phys. Rev. Lett. 103 097003Google Scholar

    [88]

    Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar

    [89]

    Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar

    [90]

    Tomita T, Kuga K, Uwatoko Y, Coleman Piers, Nakatsuji S 2015 Science 349 506Google Scholar

    [91]

    Settai R, Sugitani I, Okuda Y, Thamizhavel A, Nakashima M, Ōnuki Y, Harima H 2007 J. Magn. Magn. Mater. 310 844Google Scholar

    [92]

    Mignot J M, Flouquet J, Haen P, Lapierre F, Puech L, Voiron J 1988 J. Magn. Magn. Mater. 76 97

    [93]

    Knafo W, Aoki D, Vignolles D, Vignolle B, Klein Y, Jaudet C, Villaume A, Proust C, Flouquet J 2010 Phys. Rev. B 81 094403Google Scholar

    [94]

    Sugiyama K, Nakashima M, Ohkuni H, Kindo K, Haga Y, Honma T, Yamamoto E, Ōnuki Y 1999 J. Phys. Soc. Jpn. 68 3394Google Scholar

    [95]

    Löhneysen H, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015Google Scholar

    [96]

    Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidit W, Loewenhaupt M, Steglich F 2011 Phys. Rev. Lett. 106 246401Google Scholar

    [97]

    Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar

    [98]

    Coleman P, Pépin C, Si Q, Ramazashvili R 2001 J. Phys. Condens. Matter 13 R723Google Scholar

    [99]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186Google Scholar

    [100]

    Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J 2006 Phys. Rev. B 74 020501

    [101]

    Senthil T, Sachdev S, Vojta M 2003 Phys. Rev. Lett. 90 216403Google Scholar

    [102]

    Watanabe S, Miyake K 2010 Phys. Rev. Lett. 105 186403Google Scholar

    [103]

    Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. 109 3238Google Scholar

    [104]

    Yang Y 2016 Rep. Prog. Phys. 79 074501Google Scholar

    [105]

    Jiao L, Smidman M, Kohama Y, Wang Z S, Graf D, Weng Z F, Zhang Y J, Matsuo A, Bauer E D, Lee Hanoh, Kirchner S, Singleton J, Kindo K, Wosnitza J, Steglich F, Thompson J D, Yuan H Q, 2019 Phys. Rev. B. 99 045127Google Scholar

    [106]

    Shishido H, Settai R, Harima H, Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103Google Scholar

    [107]

    Belitz D, Kirkpatrick T R, Vojta T 1999 Phys. Rev. Lett. 82 4707Google Scholar

    [108]

    Uhlarz M, Pfleiderer C, Hayden S M 2004 Phys. Rev. Lett. 93 256404Google Scholar

    [109]

    Barakat S, Braithwaite D, Alireza P, Grube K, Uhlarz M, Wilson J, Pfleiderer C, Flouquet J, Lonzarich G 2005 Physica B 359 1216

    [110]

    Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330Google Scholar

    [111]

    Friedemann S, Duncan W J, Hirschberger M, Bauer T W, Küchler R, Neubauer A, Brando M, Pfleiderer C, Grosche F M 2018 Nat. Phys. 14 62Google Scholar

    [112]

    Wang R, Gebretsadik A, Ubaid-Kassis S, Schroeder A, Vojta T, Baker P J, Pratt F L, Blundell S J, Lancaster T, Franke I, Möller J S, Page K 2017 Phys. Rev. Lett. 118 267202Google Scholar

    [113]

    Maple M B, Butch N P, Bauer E D, Zapf V S, Ho P C, Wilson S D, Dai P C, Adroja D T, Lee S H, Chung J H, Lynn J W 2006 Physica B 378 911

    [114]

    Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C, Steglich F, Brando M 2013 Science 339 933Google Scholar

    [115]

    Allen J W, Batlogg B, Wachter P L 1979 Phys. Rev. B 20 4807Google Scholar

    [116]

    Wolgast S, Kurdak, C, Sun K, Allen J W, Kim D J, Fisk Z 2013 Phys. Rev. B 18 180405

    [117]

    Neupane M, Alidoust Nasser, Xu S Y, Kondo T, Ishida Y, Kim D J, Liu C, Belopolski I, Jo Y J, Chang T R, Jeng H T, Durakiewicz T, Balicas L, Lin H, Bansil A, Shin S, Fisk Z, Hasan M Z 2013 Nat. Commun. 4 2991Google Scholar

    [118]

    Syers P, Kim D, Fuhrer M S, Paglione J 2015 Phys. Rev. Lett. 114 096601Google Scholar

    [119]

    Miyazaki H, Hajiri T, Ito T, Kunii S, and Kimura S 2012 Phys. Rev. B 86 075105Google Scholar

    [120]

    Jiao L, Rößler S, Kim D J, Tjeng L H, Fisk Z, Steglich F, Wirth S 2016 Nat. Commun. 7 13762Google Scholar

    [121]

    Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, Xia J 2013 Sci. Rep. 3 3150Google Scholar

    [122]

    Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar

    [123]

    Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein1 M, Kiourlappou1 M, Srivastava1 A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, Sebastian Suchitra E 2015 Science 349 287Google Scholar

    [124]

    Deng X, Haule K, Kotliar G 2013 Phys. Rev. Lett. 111 176404Google Scholar

    [125]

    Xiang Z, Kasahara Y, Asaba T, Lawson1 B, Tinsman C, Chen Lu, Sugimoto U, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y, Li L 2018 Science 362 65Google Scholar

    [126]

    Weng H, Zhao J, Wang Z, Fang Z, Dai X 2014 Phys. Rev. Lett. 112 016403Google Scholar

    [127]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408Google Scholar

    [128]

    Dzero M, Xia J, Galitski V, Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249Google Scholar

    [129]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [130]

    Xu Y, Yue X, Weng H, Dai X 2017 Phys. Rev. X 7 011027

    [131]

    Lai H H, Grefe S E, Paschen S, Si Q 2018 Proc. Natl. Acad. Sci. 115 93Google Scholar

    [132]

    Cao C, Zhi G X, Zhu J X 2019 arXiv 1904.00675

    [133]

    Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, Yuan H Q 2018 Nat. Commun. 9 4622Google Scholar

    [134]

    Wu F, Guo C Y, Smidman M, Zhang J L, Yuan H Q 2017 Phys. Rev. B 96 125122Google Scholar

    [135]

    Li P, Wu Z, Wu F, Cao C, Guo C, Wu Yi, Liu Yi, Sun Zhe, Cheng C M, Lin D S, Steglich, F, Yuan Q Y, Chiang T C, Liu Y 2018 Phys. Rev. B 98 085103Google Scholar

    [136]

    Wu F, Guo C Y, Smidman M, Zhang J L, Chen Y, Singleton J, Yuan H Q 2019 npj Quantum Mater. 4 20Google Scholar

    [137]

    Wu Z Z, Wu F, Li P, Guo C Y, Liu Y, Sun Z, Cheng C M, Chiang T C, Cao C, Yuan H Q, Liu Y 2019 Phys. Rev. B 99 035158Google Scholar

    [138]

    Duan X, Wu F, Chen J, Zhang P, Liu Y, Yuan H Q, Cao C 2018 Commun. Phys. 1 71Google Scholar

    [139]

    Guo C, Cao C, Smidman M, Wu F, Zhang Y J, Zhang F C, Yuan H Q 2017 npj Quantum Mater. 2 39Google Scholar

    [140]

    Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar

    [141]

    Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar

    [142]

    Mydosh J A, Oppeneer P M 2011 Rev. Mod. Phys. 83 1301Google Scholar

    [143]

    Aynajian P, Neto E H da Silva, Parker C V, Huang Y K, Pasupathy A, Mydosh J A, Yazdani A 2010 Proc. Natl. Acad. Sci. 107 10383Google Scholar

    [144]

    Shishido, Hashimoto K, Shibauchi T, Sasaki T, Oizumi H, Kobayashi N, Takamasu T, Takehana K, Imanaka Y, Matsuda T D, Haga Y, Onuki Y, Matsuda Y 2009 Phys. Rev. Lett. 102 156403Google Scholar

    [145]

    Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, Buyers W J L 2007 Nat. Phys. 3 96Google Scholar

    [146]

    Matsuda Y, Okazaki R, Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y 2010 Physica C 470 1013Google Scholar

    [147]

    Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar

    [148]

    Kung H H, Baumbach R E, Bauer E D, Thorsmølle V K, Zhang W L, Haule K, Mydosh Y A, Blumberg G 2015 Science 347 1339Google Scholar

    [149]

    Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y 2011 Science 331 439Google Scholar

    [150]

    Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O, von Löhneysen H 2017 Phys. Rev. Lett. 118 107204Google Scholar

    [151]

    Gerber S, Bartkowiak M, Gavilano J, Ressouche E, Egetenmeyer N, Niedermayer C, Bianchi A D, Movshovich R, Bauer E D, Thompson J D, Kenzelmann M 2014 Nat. Phys. 10 126Google Scholar

    [152]

    Si Q 2010 Phys. Status Solidi 247 476Google Scholar

    [153]

    Kenzelmann M, Strssle T, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar

    [154]

    Kumagai K, Shishido H, Shibauchi T, Matsuda Y 2011 Phys. Rev. Lett. 106 137004Google Scholar

    [155]

    Radovan H A, Fortune N, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar

    [156]

    Kenzelmann M, Gerber S, Egetenmeyer N, Gavilano J L, Strässle T, Bianchi A D, Ressouche E, Movshovich R, Baue R E D, Sarrao J L, Thompson J D 2010 Phys. Rev. Lett. 104 127001Google Scholar

    [157]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480Google Scholar

    [158]

    Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486Google Scholar

    [159]

    Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

  • 图 1  重费米子材料大多是含有镧系或锕系元素的金属间化合物

    Fig. 1.  Intermetallic compounds with lanthanides or actinides form the majority of heavy fermion materials.

    图 2  (a) CeCu2Si2结构示意图; (b), (c)超导电性在电阻和比热上的体现[3]; (d) 压力诱导的双超导相[8]

    Fig. 2.  (a) A schematic illustration of the crystal structure of CeCu2Si2; (b) and (c) evidences for superconductivity in CeCu2Si2 from resistivity and heat capacity, respectively[3]; (d) temperature-pressure phase diagram of CeCu2Si2 and CeCu2(Si1–xGex)2, suggesting two separate superconducting domes[8].

    图 3  (a) CenMmIn3n+2m (M = Co, Rh, Ir; n, m为整数)体系的晶体结构 (以M = Rh为例); (b) CeIn3和CeRhIn5的压力-温度相图示意图[24]

    Fig. 3.  (a) Schematic illustrations of crystalline structures in CenMmIn3n+2m (M = Co, Rh, Ir; n, m are integers) (M = Rh for example); (b) a schematic pressure-temperature phase diagram of CeIn3 and CeRhIn5[24].

    图 4  (a) YbRh2Si2和YbRh2(Si0.95Ge0.05)2B-T相图[43]; (b) 极低温下的YbRh2Si2B-T相图[47]

    Fig. 4.  (a) Magnetic field (B)-temperature (T) phase diagram of YbRh2Si2 and YbRh2(Si0.95Ge0.05)2[43]; (b) B-T phase diagram of YbRh2Si2 at lower temperature, suggesting a superconducting region[47].

    图 5  (a) UBe13结构示意图; (b) UPt3结构示意图; (c) Th掺杂的UBe13相图[53]; (d) UPt3的超导相图[58]

    Fig. 5.  (a), (b) Schematic illustrations of the crystalline structure of UBe13 and UPt3, respectively; (c) superconducting phase diagram of UBe13 as a function of Th-doping[53]; (d) magnetic field–temperature superconducting phase diagram of UPt3[58].

    图 6  重费米子超导体CeCu2Si2的(a)磁场穿透深度Δλ[10]和(b)低温比热系数Ce/T[11], 两者在低温都呈指数衰减

    Fig. 6.  Temperature dependence of the magnetic penetration depth Δλ[10] (a) and specific heat Ce/T[11](b) of CeCu2Si2, both showing a fully gapped behavior at the lowest temperature.

    图 7  重费米子超导体超导相和量子相变 (a) CePd2Si2, 超导出现在反铁磁量子临界点附近[19]; (b) UCoGe, 超导出现在铁磁量子相变附近[87]; (c) PrTi2Al20, 超导与多极矩序[89]; (d) β-YbAlB4, 超导远离反铁磁量子临界点[90]

    Fig. 7.  Heavy fermion superconductors and quantum phase diagrams: (a) CePd2Si2, superconductivity (SC) near an antiferromagnetic quantum critical point(QCP)[19]; (b) UCoGe, SC near a ferromagnetic QCP[87]; (c) PrTi2Al20, SC coexists with multipolar order and gets enhanced near its QCP[89]; (d) β-YbAlB4, SC far away from an antiferromagnetic QCP[90].

    图 8  巡游量子临界点(a)和局域量子临界点(b)的理论相图 图中的横坐标是非热力的调控参量δ, 纵坐标表示温度T, 调控参量δ可以调节RKKY作用和Kondo作用的相对强度; 图(a)显示量子临界点伴随近藤效应的塌陷, 导致费米面在此发生跳变; 而在图(b)中, 近藤效应发生在反铁磁态内部, 费米面在量子临界点连续变化; TN代表反铁磁转变温度, TFL表示费米液体的温度上限, $ E_{\log }^* $标记小费米面到大费米面的转变, T0代表近藤晶格形成的过渡区间[99]

    Fig. 8.  Schematic phase diagrams for itinerant quantum critical point (QCP) (a) and local QCP (b), respectively, proposed in one theoretical model. The x-axis denotes nonthermal tuning parameters δ, y-axis is the temperature T. TN is the antiferromagnetic ordering temperature, $ E_{\log }^* $ denotes the volume change of Fermi surface and T0 is the temperature regime where kondo lattice forms[99].

    图 9  CeRhIn5在(a)压力[100]和(b) 磁场调制下的相图[35]; (c) 可能的零温压力-磁场相图[35]

    Fig. 9.  Experimental phase diagram of CeRhIn5 tuned by pressure[100] (a) and magnetic field[35] (b); (c) the proposed zero-temperature pressure-field global phase diagram[35].

    图 10  (a) 拓扑近藤绝缘体SmB6的电阻随温度变化测量结果[116], 在低温, 电阻的上升趋势逐渐饱和, 形成一个平台; (b) 能带计算表明, SmB6的能带结构中存在能带反转, 从而导致了表面狄拉克锥的出现[128]

    Fig. 10.  (a) Temperature dependence of resistivity for a possible topological Kondo insulator SmB6, where a clear plateau is observed at low temperature[116]; (b) band inversion and surface Dirac cone of SmB6, from band-structure calculation[128].

    图 11  YbPtBi在低温重费米子态的拓扑性质[133] (a) 电子比热Cp正比于温度T的三次方; (b) 拓扑霍尔效应

    Fig. 11.  Topological properties of the low temperature heavy fermion state in YbPtBi[133]: (a) T3-behavior of the low temperature specific heat Cp/T in different fields; (b) topological Hall effect at low temperatures.

    图 12  (a) URu2Si2材料在压力下的相图[146], 隐藏序相逐渐被抑制, 转变为反铁磁序, 同时超导相消失; (b) CePdAl材料的磁场-温度相图[150], 在某一磁场区间内, 比热测量结果表明其熵出现极大增加; (c) CeCoIn5中子散射结果表明其超导上临界磁场附近存在一个特殊的Q相[151]

    Fig. 12.  (a) Pressure-temperature phase diagram of URu2Si2[146]; (b) magnetic field- temperature phase diagram of CePdAl[150]; (c) Q-phase of CeCoIn5, by neutron scattering measurements[151].

    表 1  重费米子超导材料(超导转变温度Tc, 比热系数γ, 上临界场Hc2(0))

    Table 1.  A summary of heavy fermion superconductors (Tc is superconducting transition temperature, γ is specific heat coefficient, Hc2(0) is the upper critical field).

    类型化合物Tc/Kγ/mJ·mol–1·K–2Hc2 (0)/T
    CeT2X2CeCu2Si20.6410000.45//a
    CeCu2Ge20.64 (10 GPa)2//a
    CePd2Si20.5 (2.7 GPa)650.7//a  1.3//c
    CeAu2Si22.5 (22.5 GPa)
    CeNi2Ge20.3350
    CeRh2Si20.35 (0.9 GPa)23
    CeTX3CeRhSi31.05 (2.6 GPa)1107
    CeIrSi31.59 (2.6 GPa)12030
    CeNiGe30.48 (6.8 GPa)342
    CeCoGe30.7 (5.5 GPa)3222
    CeIrGe31.6 (24 GPa)8017
    CemTnIn3m+2nCeIn30.25 (2.5 GPa)3700.45
    CeCoIn52.330011.6—11.9//a  4.95//c
    CeRhIn51.9 (1.77 GPa)5010.2//c
    CeIrIn50.47000.53
    CePt2In72.3 (3.1 GPa)34015
    Ce2CoIn80.4460
    Ce2RhIn82.0 (2.3 GPa)4005.36
    Ce2PdIn80.68550
    Ce3PdIn110.422902.8
    其他铈基CePt3Si0.753905
    CePd5Al20.57 (10.8 GPa)560.25
    镨基PrOs4Sb121.855002.3
    PrTi2Al200.21000.006
    PrV2Al200.05900.014
    镱基YbRh2Si20.002
    β-YbAlB40.081300.03
    铀基UIr0.14 (2.6 GPa)48.50.026
    UGe20.7 (1.2 GPa)1001.4
    UBe130.910009
    UPt30.55, 0.484222.8//a
    UCoGe0.66555//a
    URhGe0.251602//a
    UNi2Al31.01201.6
    UPd2Al32.01500.8
    URu2Si21.565.510
    镎基NpPd5Al25.02003.7//a
    钚基PuCoGa518.07774
    PuCoIn52.520032//a, 10//c
    PuRhGa5980-15025//ab
    PuRhIn51.735023//ab
    下载: 导出CSV
  • [1]

    Andres K, Graebner J E, Ott H R 1975 Phys. Rev. Lett. 35 1779Google Scholar

    [2]

    Grewe N 1984 Solid State Commun. 50 19Google Scholar

    [3]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schäfer H 1979 Phys. Rev. Lett. 43 1892Google Scholar

    [4]

    Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, Monthoux P 2001 J. Phys. Condens. Matter 1 378

    [5]

    Hegger H, Petrovic C, Moshopoulou E G, Sarrao J L, Fisk Z, Thompson J D 2000 Phys. Rev. Lett. 84 4986Google Scholar

    [6]

    Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z, Thompson J D 2001 Europhys. Lett. 53 354Google Scholar

    [7]

    Steglich F, Gegenwart P, Geibel C, Helfrich R, Hellmann P, Lang M, Link A, Modler R, Sparn G, Büttgen N, Loidl A 1996 Physica B 223-224 1

    [8]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104Google Scholar

    [9]

    Ueda K, Kitaoka Y, Yamada H, Kohori Y, Kohara Y, Asayama K 1987 J. Phys. Soc. Jpn. 56 867Google Scholar

    [10]

    Pang G M, Smidman M, Zhang J L, Jiao L, Weng Z F, Nica E M, Chen Y, Jiang W B, Zhang Y J, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q M, Yuan H Q 2018 Proc. Natl. Acad. Sci. 115 5343Google Scholar

    [11]

    Kittaka S, Aoki Y, Shimura Y, Sakakibara T, Seiro S, Geibel C, Steglich F, Ikeda H, Machida K 2014 Phys. Rev. Lett. 112 067002Google Scholar

    [12]

    Ikeda H, Suzuki M, Arita R 2015 Phys. Rev. Lett. 114 147003Google Scholar

    [13]

    Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, Steglich F 2011 Nat. Phys. 7 119Google Scholar

    [14]

    Trovarelli O, Weiden M, Müller-Reisener R, Gómez-Berisso M, Gegenwart P, Deppe M, Geibel C, Sereni J G, Steglich F 1997 Phys. Rev. B 56 678Google Scholar

    [15]

    Bruls G, Wolf B, Finsterbusch D, Thalmeier P, Kouroudis I, Sun W, Assmus W, Lüthi B 1994 Phys. Rev. Lett. 72 1754Google Scholar

    [16]

    Steglich F 2005 J. Phys. Soc. Jpn. 74 167Google Scholar

    [17]

    Jaccard D, Behnia, Sierro J 1992 Phys. Lett. A 163 475Google Scholar

    [18]

    Grosche F M, Julian S R, Mathur N D, Lonzarich G G 1996 Physica B 223-224 50Google Scholar

    [19]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [20]

    Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L, Fisk Z 1996 Phys. Rev. B 53 8241Google Scholar

    [21]

    Ren Z, Pourovskii L V, Giriat G, Lapertot G, Georges A, Jaccard D 2014 Phys. Rev. X 4 031055

    [22]

    Gegenwart P, Kromer F, Lang M, Sparn G, Geibel C, Steglich F 1999 Phys. Rev. Lett. 82 1293Google Scholar

    [23]

    Pfleiderer C 2009 Rev. Mod. Phys. 81 1551Google Scholar

    [24]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177Google Scholar

    [25]

    Knebel G, Braithwaite D, Canfield P C, Lapertot G, Flouquet J 2001 Phys. Rev. B 65 024425Google Scholar

    [26]

    Hertz J A 1976 Phys. Rev. B 14 1165Google Scholar

    [27]

    Millis A J 1993 Phys. Rev. B 48 7183Google Scholar

    [28]

    Sarrao J L, Thompson J D 2007 J. Phys. Soc. Jpn. 76 051013Google Scholar

    [29]

    Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, Follath R 2008 Phys. Rev. B 77 155128Google Scholar

    [30]

    Cornelius A L, Arko A J, Sarrao J L, Hundley M F, Fisk Z 2000 Phys. Rev. B 62 14181Google Scholar

    [31]

    Hall D, Palm E C, Murphy T P, Tozer S W, Petrovic C, Eliza M R, Lydia P, Li C Q H, Alver U, Goodrich R G, Sarrao J L, Pagliuso P G, Wills J M, Fisk Z 2001 Phys. Rev. B 64 064506Google Scholar

    [32]

    Akbari A, Thalmeier P 2012 Phys. Rev. B 86 134516Google Scholar

    [33]

    An K, Sakakibara T, Settai R, Onuki Y, Hiragi M, Ichioka M, Machida K 2010 Phys. Rev. Lett. 104 037002Google Scholar

    [34]

    Bianchi A, Movshovich R, Vekhter I, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 257001Google Scholar

    [35]

    Jiao L, Chen Y, Kohama Y, Graf D, Bauer E D, Singleton J, Zhu J X, Weng Z F, Pang G M, Shang T, Zhang J L, Lee H, Park T, Jaime M, Thompson J D, Steglich F, Si Q M, Yuan H Q 2015 Proc. Natl. Acad. Sci. 112 673Google Scholar

    [36]

    Bianchi A, Movshovich R, Jaime M, Thompson J D, Pagliuso P G, Sarrao J L 2001 Phys. Rev. B 64 220504Google Scholar

    [37]

    Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, Thompson J D 2003 Phys. Rev. B 67 020506Google Scholar

    [38]

    Kratochvilova M, Dusek M, Uhlirova K, Rudajevova A, Prokleska J, Vondrackova B, Custers J, Sechovsky V 2014 J. Cryst. Growth 397 47Google Scholar

    [39]

    Kratochvílová M, Prokleška J, Uhlířová K, Tkáč V, Dušek M, Sechovský V, Custers J 2015 Sci. Rep. 5 15904Google Scholar

    [40]

    Rossi D, Marazza R, Ferro R 1979 J. Less-Common Met. 66 P17Google Scholar

    [41]

    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Phys. Rev. Lett. 89 056402Google Scholar

    [42]

    Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G, Steglich F 2000 Phys. Rev. Lett. 85 626Google Scholar

    [43]

    Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C, Coleman P 2003 Nature 424 524Google Scholar

    [44]

    Friedemann S, Oeschler N, Wirth S, Krellner C, Geibel C, Steglich F, Paschen S, Kirchner S, Si Q 2010 Proc. Natl. Acad. Sci. 107 14547Google Scholar

    [45]

    Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, von Löhneysen H, Bucher E, Ramazashvili R, Coleman P 2000 Nature 407 351Google Scholar

    [46]

    Si Q, Steglich F 2010 Science 329 1161Google Scholar

    [47]

    Schuberth E, Tippmann M, Steinke L, Lausberg S, Brando S, Krellner C, Geibel C, Yu R, Si Q, Steglich F 2016 Science 351 485Google Scholar

    [48]

    Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595Google Scholar

    [49]

    Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915Google Scholar

    [50]

    Einzel D, Hirschfeld P J, Gross F, Chandrasekhar B S, Andres K, Ott H R, Beuers J, Fisk Z, Smith J L 1986 Phys. Rev. Lett. 56 2513Google Scholar

    [51]

    Shimizu Y, Kittaka S, Sakakibara T, Haga Y, Yamamoto E, Amitsuka H, Tsutsumi Y, Machida K 2015 Phys. Rev. Lett. 114 147002Google Scholar

    [52]

    Joynt R, Taillefer L 2002 Rev. Mod. Phys. 74 235Google Scholar

    [53]

    Heffner R H, Smith J L, Willis J O, Birrer P, Baines C, Gygax F N, Hitti B, Lippelt E, Ott H R, Schenck A, Knetsch E A, Mydosh J A, MacLaughlin D E 1990 Phys. Rev. Lett. 65 2816Google Scholar

    [54]

    Fisher R A, Kim S, Woodfield B F, Phillips N E, Taillefer L, Hasselbach K, Flouquet J, Giorgi A L, Smith J L 1989 Phys. Rev. Lett. 62 1411Google Scholar

    [55]

    Aeppli G, Bucher E, Broholm C, Kjems J K, Baumann J, Hufnagl J 1988 Phys. Rev. Lett. 60 615Google Scholar

    [56]

    Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica (Amsterdam) 326B 414

    [57]

    Schemm E R, Gannon W J, Wishne C M, Halperin W P, Kapitulnik A 2014 Science 345 190Google Scholar

    [58]

    Huxley A, Rodière P, Paul D M, van Dijk N, Cubitt R, Flouquet J 2000 Nature 406 160Google Scholar

    [59]

    Hayden S M, Taillefer L, Vettier C, Flouquet J 1992 Phys. Rev. B 46 8675

    [60]

    Bernhoeft N, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y, Komatsubara T 1998 Phys. Rev. Lett. 81 4244Google Scholar

    [61]

    Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D, louquet J 2000 Nature 406 587Google Scholar

    [62]

    Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouguet J, Brison J P, Lhotel E, Paulsen C 2001 Nature 413 613Google Scholar

    [63]

    Huy N T, Gasparini A, de Nijs D E, Huang Y, Klaasse J C P, Gortenmulder T, de Visser A, Hamann A, Görlach T, von Löhneysen H 2007 Phys. Rev. Lett. 99 067006Google Scholar

    [64]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [65]

    Tsujimoto M, Matsumoto Y, Tomita T, Sakai A, Nakatsuji S 2014 Phys. Rev. Lett. 113 267001Google Scholar

    [66]

    Sakai A, Kuga K, Nakatsuji S 2012 J. Phys. Soc. Jpn. 81 083702Google Scholar

    [67]

    Bauer E D, Frederick N A, Ho P C, Zapf V S, Maple M B 2002 Phys. Rev. B 65 100506Google Scholar

    [68]

    Sarrao J L, Bauer E D, Mitchell J N, Tobash P H, Thompson J D 2015 Physica C 514 184Google Scholar

    [69]

    Crro N J, Caldwell T, Bauer E D, Morales L A, Graf M J, Bang Y, Balatsky A V, Thompson J D, Sarrao J L 2005 Nature 434 622Google Scholar

    [70]

    杨义峰, 李宇 2015 物理学报 64 217401Google Scholar

    Yang Y F, Li Y 2015 Acta Phys. Sin. 64 217401Google Scholar

    [71]

    Ormeno R J, Sibley A, Gough C E 2002 Phys. Rev. Lett. 88 047005Google Scholar

    [72]

    Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R, Onuki Y 2001 Phys. Rev. Lett. 87 057002Google Scholar

    [73]

    Luke G M, Keren A, Le L P, Wu W D, Uemura Y J 1993 Phys. Rev. Lett. 71 1466Google Scholar

    [74]

    Tsutsumi Y, Ishikawa M, Kawakami T, Mizushima T, Sato M, Ichioka M, Michida K 2013 J. Phys. Soc. Jpn. 82 113707Google Scholar

    [75]

    Bauer E, Hilscher G, Michor H, Paul Ch, Scheidt E W, Gribanov A, Seropegin Yu, Noel H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003Google Scholar

    [76]

    Smidman M, Salamon M B, Yuan H Q, Agterberg D F 2017 Rep. Prog. Phys. 80 036501Google Scholar

    [77]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239Google Scholar

    [78]

    Bonalde I, Bramer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002Google Scholar

    [79]

    Yogi M, Mukuda H, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2006 J. Phys. Soc. Jpn 75 013709Google Scholar

    [80]

    Yogi M, Kitaoka Y, Hashimoto S, Yasuda T, Settai R, Matsuda T D, Haga Y, Ōnuki Y, Rogl P, Bauer E 2004 Phys. Rev. Lett. 93 027003Google Scholar

    [81]

    Mukuda H, Nishide S, Harada A, Iwasaki K, Yogi M, Yashima M, Kitaoka Y, Tsujino M, Takeuchi T, Settai R, Onuki Y, Bauer E, Itoh KM, Haller E E 2009 J. Phys. Soc. Jpn. 78 014705Google Scholar

    [82]

    Kimura N, Ito K, Aoki H, Uji S, Terashima T 2007 Phys. Rev. Lett. 98 197001Google Scholar

    [83]

    Settai R, Miyauchi Y, Takeuchi T, Levy F, Sheikin I, Onuki Y 2008 J. Phys. Soc. Jpn. 77 073705Google Scholar

    [84]

    Dressel M 2007 Naturwissenschaften 94 527Google Scholar

    [85]

    Steglich F 2014 Phil. Mag. 94 3259Google Scholar

    [86]

    Pfleiderer C, Huxley A D 2002 Phys. Rev. Lett. 89 147005Google Scholar

    [87]

    Slooten E, Naka T, Gasparini A, Huang Y K, de Visser A 2009 Phys. Rev. Lett. 103 097003Google Scholar

    [88]

    Lévy F, Sheikin I, Grenier B, Huxley A D 2005 Science 309 1343Google Scholar

    [89]

    Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y, Uwatoko Y 2012 Phys. Rev. Lett. 109 187004Google Scholar

    [90]

    Tomita T, Kuga K, Uwatoko Y, Coleman Piers, Nakatsuji S 2015 Science 349 506Google Scholar

    [91]

    Settai R, Sugitani I, Okuda Y, Thamizhavel A, Nakashima M, Ōnuki Y, Harima H 2007 J. Magn. Magn. Mater. 310 844Google Scholar

    [92]

    Mignot J M, Flouquet J, Haen P, Lapierre F, Puech L, Voiron J 1988 J. Magn. Magn. Mater. 76 97

    [93]

    Knafo W, Aoki D, Vignolles D, Vignolle B, Klein Y, Jaudet C, Villaume A, Proust C, Flouquet J 2010 Phys. Rev. B 81 094403Google Scholar

    [94]

    Sugiyama K, Nakashima M, Ohkuni H, Kindo K, Haga Y, Honma T, Yamamoto E, Ōnuki Y 1999 J. Phys. Soc. Jpn. 68 3394Google Scholar

    [95]

    Löhneysen H, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015Google Scholar

    [96]

    Arndt J, Stockert O, Schmalzl K, Faulhaber E, Jeevan H S, Geibel C, Schmidit W, Loewenhaupt M, Steglich F 2011 Phys. Rev. Lett. 106 246401Google Scholar

    [97]

    Si Q, Rabello S, Ingersent K, Smith J L 2001 Nature 413 804Google Scholar

    [98]

    Coleman P, Pépin C, Si Q, Ramazashvili R 2001 J. Phys. Condens. Matter 13 R723Google Scholar

    [99]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186Google Scholar

    [100]

    Knebel G, Aoki D, Braithwaite D, Salce B, Flouquet J 2006 Phys. Rev. B 74 020501

    [101]

    Senthil T, Sachdev S, Vojta M 2003 Phys. Rev. Lett. 90 216403Google Scholar

    [102]

    Watanabe S, Miyake K 2010 Phys. Rev. Lett. 105 186403Google Scholar

    [103]

    Abrahams E, Wölfle P 2012 Proc. Natl. Acad. Sci. 109 3238Google Scholar

    [104]

    Yang Y 2016 Rep. Prog. Phys. 79 074501Google Scholar

    [105]

    Jiao L, Smidman M, Kohama Y, Wang Z S, Graf D, Weng Z F, Zhang Y J, Matsuo A, Bauer E D, Lee Hanoh, Kirchner S, Singleton J, Kindo K, Wosnitza J, Steglich F, Thompson J D, Yuan H Q, 2019 Phys. Rev. B. 99 045127Google Scholar

    [106]

    Shishido H, Settai R, Harima H, Ōnuki Y 2005 J. Phys. Soc. Jpn. 74 1103Google Scholar

    [107]

    Belitz D, Kirkpatrick T R, Vojta T 1999 Phys. Rev. Lett. 82 4707Google Scholar

    [108]

    Uhlarz M, Pfleiderer C, Hayden S M 2004 Phys. Rev. Lett. 93 256404Google Scholar

    [109]

    Barakat S, Braithwaite D, Alireza P, Grube K, Uhlarz M, Wilson J, Pfleiderer C, Flouquet J, Lonzarich G 2005 Physica B 359 1216

    [110]

    Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330Google Scholar

    [111]

    Friedemann S, Duncan W J, Hirschberger M, Bauer T W, Küchler R, Neubauer A, Brando M, Pfleiderer C, Grosche F M 2018 Nat. Phys. 14 62Google Scholar

    [112]

    Wang R, Gebretsadik A, Ubaid-Kassis S, Schroeder A, Vojta T, Baker P J, Pratt F L, Blundell S J, Lancaster T, Franke I, Möller J S, Page K 2017 Phys. Rev. Lett. 118 267202Google Scholar

    [113]

    Maple M B, Butch N P, Bauer E D, Zapf V S, Ho P C, Wilson S D, Dai P C, Adroja D T, Lee S H, Chung J H, Lynn J W 2006 Physica B 378 911

    [114]

    Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C, Steglich F, Brando M 2013 Science 339 933Google Scholar

    [115]

    Allen J W, Batlogg B, Wachter P L 1979 Phys. Rev. B 20 4807Google Scholar

    [116]

    Wolgast S, Kurdak, C, Sun K, Allen J W, Kim D J, Fisk Z 2013 Phys. Rev. B 18 180405

    [117]

    Neupane M, Alidoust Nasser, Xu S Y, Kondo T, Ishida Y, Kim D J, Liu C, Belopolski I, Jo Y J, Chang T R, Jeng H T, Durakiewicz T, Balicas L, Lin H, Bansil A, Shin S, Fisk Z, Hasan M Z 2013 Nat. Commun. 4 2991Google Scholar

    [118]

    Syers P, Kim D, Fuhrer M S, Paglione J 2015 Phys. Rev. Lett. 114 096601Google Scholar

    [119]

    Miyazaki H, Hajiri T, Ito T, Kunii S, and Kimura S 2012 Phys. Rev. B 86 075105Google Scholar

    [120]

    Jiao L, Rößler S, Kim D J, Tjeng L H, Fisk Z, Steglich F, Wirth S 2016 Nat. Commun. 7 13762Google Scholar

    [121]

    Kim D J, Thomas S, Grant T, Botimer J, Fisk Z, Xia J 2013 Sci. Rep. 3 3150Google Scholar

    [122]

    Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar

    [123]

    Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein1 M, Kiourlappou1 M, Srivastava1 A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, Sebastian Suchitra E 2015 Science 349 287Google Scholar

    [124]

    Deng X, Haule K, Kotliar G 2013 Phys. Rev. Lett. 111 176404Google Scholar

    [125]

    Xiang Z, Kasahara Y, Asaba T, Lawson1 B, Tinsman C, Chen Lu, Sugimoto U, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y, Li L 2018 Science 362 65Google Scholar

    [126]

    Weng H, Zhao J, Wang Z, Fang Z, Dai X 2014 Phys. Rev. Lett. 112 016403Google Scholar

    [127]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408Google Scholar

    [128]

    Dzero M, Xia J, Galitski V, Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249Google Scholar

    [129]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [130]

    Xu Y, Yue X, Weng H, Dai X 2017 Phys. Rev. X 7 011027

    [131]

    Lai H H, Grefe S E, Paschen S, Si Q 2018 Proc. Natl. Acad. Sci. 115 93Google Scholar

    [132]

    Cao C, Zhi G X, Zhu J X 2019 arXiv 1904.00675

    [133]

    Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, Yuan H Q 2018 Nat. Commun. 9 4622Google Scholar

    [134]

    Wu F, Guo C Y, Smidman M, Zhang J L, Yuan H Q 2017 Phys. Rev. B 96 125122Google Scholar

    [135]

    Li P, Wu Z, Wu F, Cao C, Guo C, Wu Yi, Liu Yi, Sun Zhe, Cheng C M, Lin D S, Steglich, F, Yuan Q Y, Chiang T C, Liu Y 2018 Phys. Rev. B 98 085103Google Scholar

    [136]

    Wu F, Guo C Y, Smidman M, Zhang J L, Chen Y, Singleton J, Yuan H Q 2019 npj Quantum Mater. 4 20Google Scholar

    [137]

    Wu Z Z, Wu F, Li P, Guo C Y, Liu Y, Sun Z, Cheng C M, Chiang T C, Cao C, Yuan H Q, Liu Y 2019 Phys. Rev. B 99 035158Google Scholar

    [138]

    Duan X, Wu F, Chen J, Zhang P, Liu Y, Yuan H Q, Cao C 2018 Commun. Phys. 1 71Google Scholar

    [139]

    Guo C, Cao C, Smidman M, Wu F, Zhang Y J, Zhang F C, Yuan H Q 2017 npj Quantum Mater. 2 39Google Scholar

    [140]

    Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, Thompson J D 1986 Phys. Rev. Lett. 56 185Google Scholar

    [141]

    Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, Mydosh J A 1987 Phys. Rev. Lett. 58 1467Google Scholar

    [142]

    Mydosh J A, Oppeneer P M 2011 Rev. Mod. Phys. 83 1301Google Scholar

    [143]

    Aynajian P, Neto E H da Silva, Parker C V, Huang Y K, Pasupathy A, Mydosh J A, Yazdani A 2010 Proc. Natl. Acad. Sci. 107 10383Google Scholar

    [144]

    Shishido, Hashimoto K, Shibauchi T, Sasaki T, Oizumi H, Kobayashi N, Takamasu T, Takehana K, Imanaka Y, Matsuda T D, Haga Y, Onuki Y, Matsuda Y 2009 Phys. Rev. Lett. 102 156403Google Scholar

    [145]

    Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, Buyers W J L 2007 Nat. Phys. 3 96Google Scholar

    [146]

    Matsuda Y, Okazaki R, Kasahara Y, Shishido H, Shibauchi T, Haga Y, Matsuda T D, Onuki Y 2010 Physica C 470 1013Google Scholar

    [147]

    Schemm E R, Baumbach R E, Tobash P H, Ronning F, Bauer E D, Kapitulnik A 2015 Phys. Rev. B 91 140506Google Scholar

    [148]

    Kung H H, Baumbach R E, Bauer E D, Thorsmølle V K, Zhang W L, Haule K, Mydosh Y A, Blumberg G 2015 Science 347 1339Google Scholar

    [149]

    Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y 2011 Science 331 439Google Scholar

    [150]

    Lucas S, Grube K, Huang C L, Sakai A, Wunderlich S, Green E L, Wosnitza J, Fritsch V, Gegenwart P, Stockert O, von Löhneysen H 2017 Phys. Rev. Lett. 118 107204Google Scholar

    [151]

    Gerber S, Bartkowiak M, Gavilano J, Ressouche E, Egetenmeyer N, Niedermayer C, Bianchi A D, Movshovich R, Bauer E D, Thompson J D, Kenzelmann M 2014 Nat. Phys. 10 126Google Scholar

    [152]

    Si Q 2010 Phys. Status Solidi 247 476Google Scholar

    [153]

    Kenzelmann M, Strssle T, Niedermayer C, Sigrist M, Padmanabhan B, Zolliker M, Bianchi A D, Movshovich R, Bauer E D, Sarrao J L, Thompson J D 2008 Science 321 1652Google Scholar

    [154]

    Kumagai K, Shishido H, Shibauchi T, Matsuda Y 2011 Phys. Rev. Lett. 106 137004Google Scholar

    [155]

    Radovan H A, Fortune N, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar

    [156]

    Kenzelmann M, Gerber S, Egetenmeyer N, Gavilano J L, Strässle T, Bianchi A D, Ressouche E, Movshovich R, Baue R E D, Sarrao J L, Thompson J D 2010 Phys. Rev. Lett. 104 127001Google Scholar

    [157]

    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, Wang Z 2019 Nature 566 480Google Scholar

    [158]

    Tang F, Po H C, Vishwanath A, Wan X 2019 Nature 566 486Google Scholar

    [159]

    Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H M, Fang C 2019 Nature 566 475Google Scholar

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [5] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [6] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [7] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [8] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [9] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [10] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [11] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控. 物理学报, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [12] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [13] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [14] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [15] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [16] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [17] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [18] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [19] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  20062
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 修回日期:  2019-06-19
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回