搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干反馈操控的纠缠源的分析

周瑶瑶 李鹏飞 闫智辉 贾晓军

引用本文:
Citation:

基于相干反馈操控的纠缠源的分析

周瑶瑶, 李鹏飞, 闫智辉, 贾晓军

Analysis of entanglement source based on coherent feedback control

Zhou Yao-Yao, Li Peng-Fei, Yan Zhi-Hui, Jia Xiao-Jun
PDF
HTML
导出引用
  • 基于非测量的量子相干反馈控制系统不会引入额外的噪声, 可以用于稳定、操控和改善多种量子系统的性能. 利用相干反馈的方法可以操控非简并光学参量放大器, 在一定条件下能够增强其输出Einstein-Podolsky-Rosen (EPR)纠缠态光场的纠缠度. 相干反馈控制系统中的核心光学元件是控制耦合镜, 其透射率的选取直接影响反馈控制的效果. 本文针对控制耦合镜对偏振相互垂直的种子光场透射率不同的情况, 从理论上分析了该情况对相干反馈控制效果的影响, 得出相干反馈的正作用达到最佳时对控制镜透射率的要求, 理论分析与实验结果相吻合. 同时分析了相干反馈控制效果随其他物理参量的变化关系, 得出系统进一步优化的实验条件. 为今后相干反馈控制系统中物理参量的选择提供依据, 也为利用相干反馈操控更多的量子系统提供参考.
    Entangled state of light with quantum correlations between amplitude and phase quadratures is a necessary quantum resource in optical continuous variable (CV) quantum information systems. The CV Einstein-Podolsky-Rosen (EPR) entangled optical field is one of the most basic quantum resources, which can be generated by a non-degenerate optical parametric amplifier (NOPA) operated below the threshold pump power. Manipulating the EPR entangled state of light effectively can break through the limitation of the imperfect performance of optical components in optical cavities and then further improve the entanglement level under certain conditions. So it is necessary to find out an effective optical scheme of manipulating quantum state of light. The non-measurement based coherent feedback control (CFC) system without introducing any extra noise into the controlled system, can be used to stabilize, control and improve the performance of various quantum systems. Only by selecting the right experimental parameters can the CFC system play its positive role in reaching a maximum efficacy. The key optical component, i.e. optical controller in CFC system, greatly affects the final manipulation effects. In 2015, using the method of CFC, our research team experimentally realized the enhancement of entanglement to different levels by changing the optical controller with different transmissivity values for seed optical beams. At the same time, the threshold pump power of the NOPA is reduced to different levels also. Due to the technical reasons, the transmissivity of the optical controller selected in the experiment is almost the same for the signal optical field and idle optical field. In this paper, we emphasize the condition that the transmissivity of the optical controller for the signal optical field is different from that for idle optical field. Firstly, we theoretically study the final effects of manipulating entanglement source by using the coherent feedback optical cavity under the above conditions. It is concluded that if the transmittance of control beam splitter (CBS) is low, the feedback control optical cavity works best when the optical controller has different transmissivity for signal optical beam and idle optical beam, and that if the transmittance of CBS is high, the transmittance of the optical controller for signal optical beam almost equals that for idle optical beam to make the feedback control optical cavity work best. Then we theoretically investigate the dependence of the quantum correlation noise of the quadrature amplitude and quadrature phase of the output optical fields from CFC-NOPA system on other physical parameters. Combining with the actual experimental conditions, we can find the optimal transmissivity of the optical controller and appropriate range of frequency to optimize the effects of CFC, which provides the basis for correctly selecting the actual experimental parameters in CFC systems. Theoretical analysis results also show that with the higher input and output coupling efficiency and higher nonlinear conversion efficiency of NOPA, the entangled state of light with higher entanglement degree can be obtained experimentally. This provides the reference for obtaining better quantum resources needed for studying the CV quantum information.
      通信作者: 周瑶瑶, zhouyaoyaofangxia@163.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号: 11804246, 11805141, 11904218, 11847111, 61775127, 11654002)、山西省高等学校科技创新项目(批准号:2019L0794)、山西青年三晋学者项目、山西省回国留学人员科研资助项目、山西省“1331工程”重点学科建设计划、山西省高等学校创新人才支持计划资助的课题和太原师范学院“1331工程”资助的课题.
      Corresponding author: Zhou Yao-Yao, zhouyaoyaofangxia@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11804246, 11805141, 11904218, 11847111, 61775127, 11654002), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0794), the Program for Sanjin Scholars of Shanxi Province of China, the Shanxi Scholarship Council of China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and the “1331 Program” of Taiyuan Normal University, China.
    [1]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [2]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 物理学报 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [3]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [4]

    Agarwal G S 2006 Phys. Rev. Lett. 97 023601Google Scholar

    [5]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [6]

    Chen H X, Zhang J 2009 Phys. Rev. A 79 063826Google Scholar

    [7]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [8]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305(R)Google Scholar

    [9]

    Zhou Z F, Liu C J, Fang Y M, Zhou J, Glasser R T, Chen L Q, Jing J T, Zhang W P 2012 Appl. Phys. Lett. 101 191113Google Scholar

    [10]

    Vanderbruggen T, Kohlhaas R, Bertoldi A, Bernon S, Aspect A, Landragin A, Bouyer P 2013 Phys. Rev. Lett. 110 210503Google Scholar

    [11]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [12]

    Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P, Zoller P 2006 Phys. Rev. Lett. 96 043003Google Scholar

    [13]

    Kerckhoff J, Andrews R W, Ku H S, Kindel W F, Cicak K, Simmonds R W, Lehnert K W 2013 Phys. Rev. X 3 021013

    [14]

    Vijay R, Macklin C, Slichter D H, Weber S J, Murch K W, Naik R, Korotkov A N, Siddiqi I 2012 Nature 490 77Google Scholar

    [15]

    Ristè D, Dukalski M, Watson C A, Lange G D, Tiggelman M J, Blanter Y M, Lehnert K W, Schouten R N, DiCarlo L 2013 Nature 502 350Google Scholar

    [16]

    Vuglar S L, Petersen I R 2017 IEEE Trans. Autom. Control 62 998Google Scholar

    [17]

    Chung H W, Guha S, Zheng L 2017 Phys. Rev. A 96 012320Google Scholar

    [18]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (the first version) (England: Cambridge University Press) pp216−237

    [19]

    Sayrin C, Dotsenko I, Zhou X X, Peaudecerf B, Rybarczyk T, Gleyzes S, Rouchon P, Mirrahimi M, Amini H, Brune M, Raimond J, Haroche S 2011 Nature 477 73Google Scholar

    [20]

    Inoue R, Tanaka S I R, Namiki R, Sagawa T, Takahash Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [21]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 4110Google Scholar

    [22]

    Nelson R J, Weinstein Y, Cory D, Lloyd S 2000 Phys. Rev. Lett. 85 3045Google Scholar

    [23]

    Hamerly R, Mabuchi H 2012 Phys. Rev. Lett. 109 173602Google Scholar

    [24]

    Mabuchi H 2008 Phys. Rev. A 78 032323Google Scholar

    [25]

    Dong D Y, Petersen I R 2010 IET Control Theory A 4 2651Google Scholar

    [26]

    Jacobs K, Wang X, Wiseman H M 2014 New J. Phys. 16 073036Google Scholar

    [27]

    Yamamoto N 2014 Phys. Rev. X 4 041029

    [28]

    Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar

    [29]

    Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. on Automat. Contr. 57 2045Google Scholar

    [30]

    Crisafulli O, Tezak N, Soh D B S, Armen M A, Mabuchi H 2013 Opt. Express 21 18371Google Scholar

    [31]

    Kerchhoff J, Nurdin H I, Pavlichin D, Mabuchi H 2010 Phys. Rev. Lett. 105 040502Google Scholar

    [32]

    Wang D, Xia C Q, Wang Q J, Wu Y, Liu F, Zhang Y, Xiao M 2015 Phys. Rev. B 91 121406(R)Google Scholar

    [33]

    Zhou Y Y, Jia X J, Li F, Yu J, Xie C D, Peng K C 2015 Sci. Rep. 5 11132Google Scholar

    [34]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [35]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

  • 图 1  相干反馈操控NOPA的基本原理图

    Fig. 1.  Schematic diagram of the NOPA cavity with coherent feedback control.

    图 2  CFC-NOPA系统输出光场正交分量之间的量子关联噪声与CBS对闲置光场的透射率之间的曲线关系, 虚线分别表示各个曲线的关联噪声值最小时T2的取值大小

    Fig. 2.  Quantum correlation noises of two quadrature components for two output beams from CFC-NOPA system versus the transmissivity of CBS for idle optical field. Each dashed curve represents the value of T2 when the quantum correlation noises of each curve is the minimum.

    图 3  CFC-NOPA系统输出光场正交分量之间的量子关联噪声随分析频率的变化曲线 (a) 透射率T1 = 0.3; (b) 透射率T1 = 0.5; (c) 透射率T1 = 0.7; (d)透射率T1 = 0.7, 0.8, 0.9

    Fig. 3.  Dependences of the quantum correlation noises of two quadrature components for two output beams from CFC-NOPA system on analysis frequency: (a) Transmissivity T1 = 0.3; (b) transmissivity T1 = 0.5; (c) transmissivity T1 = 0.7; (d) transmissivity T1 = 0.7, 0.8, 0.9.

    图 4  CFC-NOPA系统输出光场正交分量之间的量子关联噪声随NOPA输出镜透射率的变化曲线 红色虚线表示曲线1取最小值时${T{'}}$的大小; 蓝色虚线表示曲线2的取值小于曲线1的最小值时${T{'}}$的临界值大小; 绿色虚线表示曲线3的取值小于曲线2的最小值时 ${T{'}}$的临界值

    Fig. 4.  Quantum correlation noises of two quadrature components for two output beams from CFC-NOPA system versus transmissivity of output coupler of NOPA. The red dashed curve represents the value of ${T{'}}$ when curve 1 takes the minimum. The blue dashed curves represent the critical value of ${T{'}}$ when the value of curve 2 is less than the minimum value of curve 1. The green dashed curves represent the critical value of ${T{'}}$ when the value of curve 3 is less than the minimum value of curve 2.

    图 5  实验装置示意图 DBS: 双色分束镜; HWP1-2: $\lambda /2$波片; PBS1-3: 偏振分光棱镜; BHD1-2: 平衡零拍探测器; SA: 频谱分析仪

    Fig. 5.  Schematic diagram of experimental setup. DBS: dichroic beam splitter; HWP1-2: $\lambda /2$ waveplate; PBS1-3: polarizing beam splitter; BHD1-2: balanced homodyne detectors; SA: spectrum analyzer.

    图 6  CFC-NOPA系统的实验结构图

    Fig. 6.  Experimental structure of the CFC-NOPA system.

    图 7  实验测量结果图, SA: RBW 10 kHz; VBW 100 Hz (a)正交振幅分量和的量子噪声功率; (b)正交位相分量差的量子噪声功率

    Fig. 7.  Diagram of experimental measurement results: (a) The measured amplitude-sum correlation variances noise powers of the output beams; (b) the measured phase-difference correlation variances noise powers of the output beams. The measurement parameters of SA: RBW 10 kHz; VBW 100 Hz.

  • [1]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [2]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 物理学报 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [3]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [4]

    Agarwal G S 2006 Phys. Rev. Lett. 97 023601Google Scholar

    [5]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [6]

    Chen H X, Zhang J 2009 Phys. Rev. A 79 063826Google Scholar

    [7]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [8]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305(R)Google Scholar

    [9]

    Zhou Z F, Liu C J, Fang Y M, Zhou J, Glasser R T, Chen L Q, Jing J T, Zhang W P 2012 Appl. Phys. Lett. 101 191113Google Scholar

    [10]

    Vanderbruggen T, Kohlhaas R, Bertoldi A, Bernon S, Aspect A, Landragin A, Bouyer P 2013 Phys. Rev. Lett. 110 210503Google Scholar

    [11]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [12]

    Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P, Zoller P 2006 Phys. Rev. Lett. 96 043003Google Scholar

    [13]

    Kerckhoff J, Andrews R W, Ku H S, Kindel W F, Cicak K, Simmonds R W, Lehnert K W 2013 Phys. Rev. X 3 021013

    [14]

    Vijay R, Macklin C, Slichter D H, Weber S J, Murch K W, Naik R, Korotkov A N, Siddiqi I 2012 Nature 490 77Google Scholar

    [15]

    Ristè D, Dukalski M, Watson C A, Lange G D, Tiggelman M J, Blanter Y M, Lehnert K W, Schouten R N, DiCarlo L 2013 Nature 502 350Google Scholar

    [16]

    Vuglar S L, Petersen I R 2017 IEEE Trans. Autom. Control 62 998Google Scholar

    [17]

    Chung H W, Guha S, Zheng L 2017 Phys. Rev. A 96 012320Google Scholar

    [18]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (the first version) (England: Cambridge University Press) pp216−237

    [19]

    Sayrin C, Dotsenko I, Zhou X X, Peaudecerf B, Rybarczyk T, Gleyzes S, Rouchon P, Mirrahimi M, Amini H, Brune M, Raimond J, Haroche S 2011 Nature 477 73Google Scholar

    [20]

    Inoue R, Tanaka S I R, Namiki R, Sagawa T, Takahash Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [21]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 4110Google Scholar

    [22]

    Nelson R J, Weinstein Y, Cory D, Lloyd S 2000 Phys. Rev. Lett. 85 3045Google Scholar

    [23]

    Hamerly R, Mabuchi H 2012 Phys. Rev. Lett. 109 173602Google Scholar

    [24]

    Mabuchi H 2008 Phys. Rev. A 78 032323Google Scholar

    [25]

    Dong D Y, Petersen I R 2010 IET Control Theory A 4 2651Google Scholar

    [26]

    Jacobs K, Wang X, Wiseman H M 2014 New J. Phys. 16 073036Google Scholar

    [27]

    Yamamoto N 2014 Phys. Rev. X 4 041029

    [28]

    Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar

    [29]

    Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. on Automat. Contr. 57 2045Google Scholar

    [30]

    Crisafulli O, Tezak N, Soh D B S, Armen M A, Mabuchi H 2013 Opt. Express 21 18371Google Scholar

    [31]

    Kerchhoff J, Nurdin H I, Pavlichin D, Mabuchi H 2010 Phys. Rev. Lett. 105 040502Google Scholar

    [32]

    Wang D, Xia C Q, Wang Q J, Wu Y, Liu F, Zhang Y, Xiao M 2015 Phys. Rev. B 91 121406(R)Google Scholar

    [33]

    Zhou Y Y, Jia X J, Li F, Yu J, Xie C D, Peng K C 2015 Sci. Rep. 5 11132Google Scholar

    [34]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [35]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

  • [1] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [2] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [3] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [4] 周瑶瑶, 田剑锋, 闫智辉, 贾晓军. 两腔级联纠缠增强的理论分析. 物理学报, 2019, 68(6): 064205. doi: 10.7498/aps.68.20182079
    [5] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性. 物理学报, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [6] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [7] 曲照军, 马晓光, 徐秀玮, 杨传路. 可控三模纠缠相干态的产生. 物理学报, 2012, 61(3): 034206. doi: 10.7498/aps.61.034206
    [8] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备. 物理学报, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [9] 单传家, 刘继兵, 陈涛, 刘堂昆, 黄燕霞, 李宏. 控制Tavis-Cummings模型中两原子X态的纠缠突然死亡与突然产生. 物理学报, 2010, 59(10): 6799-6805. doi: 10.7498/aps.59.6799
    [10] 卢道明. 腔外原子操作控制腔内原子的纠缠特性. 物理学报, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [11] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [12] 刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖. 运动原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制. 物理学报, 2010, 59(5): 3227-3235. doi: 10.7498/aps.59.3227
    [13] 杨朝羽, 唐国宁. 基于蜂拥控制算法思想的时空混沌耦合反馈控制. 物理学报, 2009, 58(1): 143-149. doi: 10.7498/aps.58.143
    [14] 夏云杰, 高德营. 纠缠相干态及其非经典特性. 物理学报, 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [15] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [16] 张晓明, 彭建华, 张入元. 利用线性可逆变换增强延迟反馈方法控制混沌的有效性. 物理学报, 2005, 54(7): 3019-3026. doi: 10.7498/aps.54.3019
    [17] 贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀. 具有经典相干性的两组EPR纠缠态光场的实验产生. 物理学报, 2005, 54(6): 2717-2722. doi: 10.7498/aps.54.2717
    [18] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态. 物理学报, 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [19] 陶孟仙, 路洪, 佘卫龙. 增加光子纠缠相干态的统计性质. 物理学报, 2002, 51(9): 1996-2001. doi: 10.7498/aps.51.1996
    [20] 陈艳艳, 彭建华, 刘秉正, 魏俊杰. 增强型延迟反馈法控制低维混沌系统的解析研究. 物理学报, 2002, 51(7): 1489-1496. doi: 10.7498/aps.51.1489
计量
  • 文章访问数:  7325
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-30
  • 修回日期:  2019-08-27
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回