搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

试验优化设计Er3+/Yb3+共掺Ba5Gd8Zn4O21荧光粉及红光上转换发光性质研究

赵越 杨帆 孙佳石 李香萍 张金苏 张希珍 徐赛 程丽红 陈宝玖

引用本文:
Citation:

试验优化设计Er3+/Yb3+共掺Ba5Gd8Zn4O21荧光粉及红光上转换发光性质研究

赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖

Experimental optimal design of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor and red upconversion luminescence properties

Zhao Yue, Yang Fan, Sun Jia-Shi, Li Xiang-Ping, Zhang Jin-Su, Zhang Xi-Zhen, Xu Sai, Cheng Li-Hong, Chen Bao-Jiu
PDF
HTML
导出引用
  • 为得到最大发光强度的红光上转换Er3+/Yb3+共掺Ba5Gd8Zn4O21荧光粉, 采用均匀设计初步寻找Er3+/Yb3+共掺杂的浓度范围, 再通过二次通用旋转组合设计, 建立了Er3+/Yb3+掺杂浓度与荧光粉在980 nm与1550 nm激光激发下红色上转换发光强度的回归方程, 最后利用遗传算法解得回归方程的最优解, 即在980 nm与1550 nm激光激发下红光上转换最大发光强度对应的Er3+/Yb3+掺杂浓度, 用高温固相法分别制备出两种激发下的最优解荧光粉样品. 经X射线衍射仪分析, 证明所制备样品均为纯相Ba5Gd8Zn4O21. 在980 nm激光激发下, 最优样品的红光为双光子过程; 在1550 nm激光激发下, 最优样品的红光为三光子过程. 测量了最优样品关于温度的上转换发射光谱, 发现样品的红光上转换发光强度随着温度的升高而减弱. 所得最优样品与NaYF4∶Er3+/Yb3+红光商品粉进行比较, 在980 nm和1550 nm激光激发下, 最优样品红光上转换发光强度远强于NaYF4红光商品粉发光强度. 在相同功率密度激发下, 980 nm激光激发下的最优样品比1550 nm激光激发下的最优样品红光上转换发光强度更强.
    In order to obtain the Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 up-conversion phosphor material with maximum red luminous intensity, three steps are adopted as follows. Firstly, the uniform design in the experimental optimal design is used to find the reasonable doping concentration of Er3+/Yb3+. Secondly, according to the quadratic general rotary unitized design, the regression equation of the red luminescence intensity of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 under 980 nm and 1550 nm excitations is established. Finally, the optimal solution of the regression equation is obtained by genetic algorithm. The Ba5Gd8Zn4O21:Er3+/Yb3+ phosphors are prepared by a high-temperature solid-phase method. The crystal structure for each of the prepared phosphors is analyzed by X-ray diffraction, and it is confirmed that the prepared phosphor samples of Ba5Gd8Zn4O21 are all in pure phase. Using the 980 nm laser as an excitation source, the relationship between the red up-conversion luminescence intensity of the optimal sample and the operating current of the laser is studied. It is found that the red luminescence is emitted through a double-photon process by the formula fitting analysis. Using the 1550 nm laser as the excitation source, it is found that red luminescence is emitted through a three-photon process. The up-conversion emission spectrum of the optimal sample with respect to temperature is measured and discussed, and it is found that the red up-conversion luminescence intensity of the sample is weakened as the temperature increases. The optimal samples are compared with the commercial phosphors of NaYF4:Er3+/Yb3+ under the 980 nm and 1550 nm excitation respectively, the luminescence intensity of the optimal sample is much stronger than that of the commercial phosphor of NaYF4:Er3+/Yb3+. Moreover, under the same power density excitation, the red up conversion luminescence intensity of the optimal sample at 980 nm is stronger than that at 1550 nm.
      通信作者: 孙佳石, sunjs@dlmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774042, 11704056)、大连市高层次人才创新支持计划(批准号: 2016RQ037, 2017RQ070)、集成光电子学国家重点实验室开放课题(批准号: IOSKL2019KF06, OSKL2018KF02)、中央高校基本科研业务费专项基金(批准号: 3132019186, 3132019338, 3132019035)和大连海事大学研究生教育教学改革项目(批准号: YJG2019209, YJG2019210)资助的课题
      Corresponding author: Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774042, 11704056), the High-level Personnel in Dalian Innovation Support Program, China (Grant Nos. 2016RQ037, 2017RQ070), the Open Fund of the State Key Laboratory of Integrated Optoelectronics Granted, China (Grant Nos. IOSKL2019KF06, OSKL2018KF02), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132019186, 3132019338, 3132019035), and the Postgraduate Education and Teaching Reform Project of Dalian Maritime University, China (Grant Nos. YJG2019209, YJG2019210)
    [1]

    孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖 2015 物理学报 64 243301Google Scholar

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301Google Scholar

    [2]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [3]

    Gao G J, Busko D, Joseph R, Howard I A, Turshatov A, Richards B S 2018 ACS Appl. Mater. Interfaces 10 39851Google Scholar

    [4]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. Engl. 57 8765Google Scholar

    [5]

    Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J S, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J 2018 Sensor. Actuat. B: Chem. 257 829Google Scholar

    [6]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244Google Scholar

    [7]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [8]

    Tian B N, Chen B J, Tian Y, Li X P, Zhang J S, Sun J S, Zhong H Y, Cheng L H, Fu S B, Zhong H, Wang Y Z, Zhang X Q, Xia H P, Hu R N 2013 J. Mater. Chem. C 1 2338Google Scholar

    [9]

    Page R H, Schaffers K I, Waide P A, Tassano J B, Bischel W K 1998 J. Opt. Soc. Am. B 15 996Google Scholar

    [10]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [11]

    Li G Y, Zhou T M 2017 Nanosci. Nanotech. Lett. 9 1919Google Scholar

    [12]

    Shi R, Li B Q, Liu C M, Liang H B 2016 J. Phys. Chem. C 120 19365Google Scholar

    [13]

    Janani K, Ramasubramanian S, Thangavel R, Thiyagarajan P 2019 Solid State Sci. 91 119Google Scholar

    [14]

    Liu Y X, Zhou W, Chen L, Lin Y, Chu X Y, Zheng T Q, Wan S L 2019 Fuel 253 1545Google Scholar

    [15]

    Chen C, Li M, Wang C X, Fu S H, Yan W J, Chen C S 2018 Fiber. Polym. 19 1255Google Scholar

    [16]

    任露泉 2009 试验设计及其优化 (北京: 科学出版社) 第174—190页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Chemical Industry Press) pp174–190 (in Chinese)

    [17]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [18]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng.-En. 22 862Google Scholar

    [19]

    Tan G Z, Zhou D M, Jiang B, Dioubate M I 2008 J. Cent. South Univ. T. 15 845Google Scholar

    [20]

    杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭 2007 物理学报 56 546Google Scholar

    Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta Phys. Sin. 56 546Google Scholar

    [21]

    王欣 2018 硕士学位论文 (大连: 大连海事大学)

    Wang X 2018 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [22]

    Suo H, Guo C F, Wang W B, Li T, Duan C K, Yin M 2016 Dalton T. 45 2629Google Scholar

    [23]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210Google Scholar

    [24]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

  • 图 1  Er3+/Yb3+共掺Ba5Gd8Zn4O21在1550 nm激光激发下的上转换发射光谱(插图为1号样品与最优样品的发光强度对比)

    Fig. 1.  Up-conversion emission spectra of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor under 1550 nm laser excitation. Inset picture shows the luminescence intensity of No. 1 sample and the optimal sample for comparison.

    图 2  Er3+/Yb3+共掺Ba5Gd8Zn4O21在980 nm激光激发下的上转换发射光谱(插图为3号样品与最优样品的发光强度对比)

    Fig. 2.  Up-conversion emission spectra of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor under 980 nm laser excitation. Inset picture shows the luminescence intensity of No. 3 sample and the optimal sample for comparison.

    图 3  样品的XRD与标准卡片JCPDS No.51-1686图样

    Fig. 3.  XRD patterns of samples, and standard peaks of Ba8Gd5Zn4O21 (JCPDS No.51-1686) are included for comparison.

    图 4  上转换发光强度积分与激光器工作电流的依赖关系

    Fig. 4.  Dependence of the integrated intensity of up-conversion luminescence on laser working current.

    图 5  最优样品在(a) 980 nm与(b) 1550 nm激光激发下的红色上转换发光强度随温度的变化

    Fig. 5.  Dependence of red up-conversion luminescence intensity on temperature under (a) 980 nm and (b) 1550 nm excitation for optimal samples.

    图 6  在(a), (b) 980 nm和(c), (d) 1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的比较

    Fig. 6.  Dependence of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under (a), (b) 980 nm and (c), (d) 1550 nm excitation for optimal samples.

    图 7  在980 nm和1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的倍数比

    Fig. 7.  The Multiple ratio of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under 980 nm and 1550 nm excitation for optimal samples.

    图 8  相同功率密度下最优样品的红光上转换发光强度比较

    Fig. 8.  Comparison of red up-conversion luminescence intensity of optimal samples at the same power density.

    表 1  均匀试验设计

    Table 1.  Uniform experimental design.

    因素试验
    序号
    x1 (Er3+)/
    mol%
    x2 (Yb3+)/
    mol%
    y1550 nmy980 nm
    11(1)4(5.125)3328.262033.4
    22(2)8(10.625)11605.2101937.9
    33(3)3(3.75)32949.390471.5
    44(4)7(9.25)38447.299822.8
    55(5)2(2.375)79416.969237.5
    66(6)6(7.875)145038.5123959.0
    77(7)1(1)132225.638588.2
    88(8)5(6.5)155258.0112564.1
    99(9)9(12)105986.775933.5
    下载: 导出CSV

    表 2  自然因素水平编码表

    Table 2.  Natural factors level codes.

    zj(xj)z1(Er3+)/mol%z2(Yb3+)/mol%
    z2j(2)99
    z0j + ${\varDelta _j} $(1)8.26808.2680
    z0j(0)6.56.5
    z0j – $ {\varDelta _j}$(–1)4.73204.7320
    z1j(–2)44
    ${\varDelta _j} = \dfrac{{{z_{2j}} - {z_{1j}}}}{{2r}}$1.76801.7680
    ${x_j} = \dfrac{{{z_j} - {z_{0j}}}}{{{\varDelta _j}}}$${x_1} = \dfrac{{{z_1} - {\rm{6}}.{\rm{5}}}}{{{\rm{1}}.{\rm{7680}}}}$${x_2} = \dfrac{{{z_2} - {\rm{6}}.{\rm{5}}}}{{{\rm{1}}.{\rm{7680}}}}$
    下载: 导出CSV

    表 3  二次通用旋转组合设计的试验方案及红光发光强度

    Table 3.  Red luminescence intensity and experiment scheme of quadratic general rotary unitized design.

    序号x0x1x2x1x2x12x22y1550 nmy980 nm
    111111112944376365
    211–1–11112420154268
    31–11–11112044089291
    41–1–111110041065430
    511.414002012774467758
    61–1.414002010162373300
    7101.41400211206782410
    810–1.41400210950353292
    910000012022986752
    1010000012399380120
    1110000012417682245
    1210000011878096762
    1310000010882986738
    下载: 导出CSV

    表 4  红光的T-检验及F-检验方差分析

    Table 4.  T-test and F-test with analysis of variance of red light

    方差来源偏差平方和1偏差平方和2自由度t1统计量及F1t2统计量及F2显著性水平α1显著性水平α2显著性1显著性2
    x0142.6130.190.0010.001********
    x112.301.030.10.4****
    x210.952.800.40.02****
    x1x211.180.140.40.9*不显著
    x1210.293.050.80.02不显著***
    x2211.113.600.40.02****
    回归991488682.61960893448512.0318.770.010.01********
    剩余115427203146280989.87
    失拟43457130.8715074730.2631.110.370.010.01********
    误差156531329.6164236197.24
    总和1106915886210717443812
    注: ****极高显著水平(α ≤ 0.01); ***高显著性水平(α ≤ 0.1); **显著水平(α ≤ 0.25); *较显著水平(α ≤ 0.4).
    下载: 导出CSV
  • [1]

    孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖 2015 物理学报 64 243301Google Scholar

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301Google Scholar

    [2]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [3]

    Gao G J, Busko D, Joseph R, Howard I A, Turshatov A, Richards B S 2018 ACS Appl. Mater. Interfaces 10 39851Google Scholar

    [4]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. Engl. 57 8765Google Scholar

    [5]

    Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J S, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J 2018 Sensor. Actuat. B: Chem. 257 829Google Scholar

    [6]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244Google Scholar

    [7]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [8]

    Tian B N, Chen B J, Tian Y, Li X P, Zhang J S, Sun J S, Zhong H Y, Cheng L H, Fu S B, Zhong H, Wang Y Z, Zhang X Q, Xia H P, Hu R N 2013 J. Mater. Chem. C 1 2338Google Scholar

    [9]

    Page R H, Schaffers K I, Waide P A, Tassano J B, Bischel W K 1998 J. Opt. Soc. Am. B 15 996Google Scholar

    [10]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [11]

    Li G Y, Zhou T M 2017 Nanosci. Nanotech. Lett. 9 1919Google Scholar

    [12]

    Shi R, Li B Q, Liu C M, Liang H B 2016 J. Phys. Chem. C 120 19365Google Scholar

    [13]

    Janani K, Ramasubramanian S, Thangavel R, Thiyagarajan P 2019 Solid State Sci. 91 119Google Scholar

    [14]

    Liu Y X, Zhou W, Chen L, Lin Y, Chu X Y, Zheng T Q, Wan S L 2019 Fuel 253 1545Google Scholar

    [15]

    Chen C, Li M, Wang C X, Fu S H, Yan W J, Chen C S 2018 Fiber. Polym. 19 1255Google Scholar

    [16]

    任露泉 2009 试验设计及其优化 (北京: 科学出版社) 第174—190页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Chemical Industry Press) pp174–190 (in Chinese)

    [17]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [18]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng.-En. 22 862Google Scholar

    [19]

    Tan G Z, Zhou D M, Jiang B, Dioubate M I 2008 J. Cent. South Univ. T. 15 845Google Scholar

    [20]

    杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭 2007 物理学报 56 546Google Scholar

    Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta Phys. Sin. 56 546Google Scholar

    [21]

    王欣 2018 硕士学位论文 (大连: 大连海事大学)

    Wang X 2018 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [22]

    Suo H, Guo C F, Wang W B, Li T, Duan C K, Yin M 2016 Dalton T. 45 2629Google Scholar

    [23]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210Google Scholar

    [24]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [4] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [5] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [7] 孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖. BaY2ZnO5:Tm3+/Yb3+荧光粉的试验优化设计合成及发光性质研究. 物理学报, 2017, 66(10): 100201. doi: 10.7498/aps.66.100201
    [8] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [9] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [10] 孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖. 试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质. 物理学报, 2015, 64(24): 243301. doi: 10.7498/aps.64.243301
    [11] 潘成龙, 刘红利, 郭芸, 景姝, 孙静, 周禾丰, 王华. BaMgF4:Er3+, Yb3+上转换纳米晶的合成及其发光性能研究. 物理学报, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [12] 翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖. 试验优化设计Tm3+/Yb3+共掺钼酸钇钠荧光粉上转换发光性质的研究. 物理学报, 2013, 62(20): 203301. doi: 10.7498/aps.62.203301
    [13] 郭琳娜, 王育华. 共沉淀法制备Y2SiO5∶Er3+ ,Yb3+ ,Tm3+及其上转换发光性能研究. 物理学报, 2011, 60(2): 027803. doi: 10.7498/aps.60.027803
    [14] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光. 物理学报, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [15] 肖思国, 阳效良, 丁建文. Er3+,Er3+/Yb3+掺杂氟化镧超微材料的光谱特性与上转换发光. 物理学报, 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [16] 罗建乔, 孙敦陆, 张庆礼, 刘文鹏, 谷长江, 吴路生, 殷绍唐. Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光. 物理学报, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [17] 丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威. 980 nm激发下Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的上转换发光特性. 物理学报, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [18] 杨中民, 张勤远, 刘粤惠, 姜中宏. Yb3+/Er3+共掺锗碲酸盐玻璃上转换发光增强机理的研究. 物理学报, 2005, 54(5): 2013-2018. doi: 10.7498/aps.54.2013
    [19] 吴朝辉, 宋 峰, 刘淑静, 覃 斌, 苏 静, 田建国, 张光寅. 上转换对Er3+,Yb3+共掺磷酸盐玻璃激光器输出的影响. 物理学报, 2005, 54(12): 5637-5641. doi: 10.7498/aps.54.5637
    [20] 王吉有, 国伟林, 林志明, 宋广智, 赵丽娟, 张存洲, 张光寅. 高光强激发下Er3+/Yb3+共掺TiBa玻璃的绿光上转换发光. 物理学报, 2002, 51(8): 1861-1864. doi: 10.7498/aps.51.1861
计量
  • 文章访问数:  7386
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 修回日期:  2019-08-29
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回