搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高次谐波产生的极紫外偏振涡旋光

范鑫 梁红静 单立宇 闫博 高庆华 马日 丁大军

引用本文:
Citation:

基于高次谐波产生的极紫外偏振涡旋光

范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军

Extreme ultraviolet polarization vortex beam based on high harmonic generation

Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun
PDF
HTML
导出引用
  • 突破传统涡旋光场束缚, 发展短波极紫外涡旋光场是实现阿秒脉冲偏振控制的有效途径. 本研究利用自制的平场光栅光谱仪和超快时间保持的单色仪, 以800 nm, 35 fs高斯或具有偏振奇点的涡旋光脉冲驱动诱导氩原子产生高次谐波, 分别获得相应的高次谐波光谱以及谐波谱单阶光源的分布. 实验结果表明, 基于高次谐波产生实现近红外波段的涡旋光束特性转移到极紫外波段, 优化后的极紫外涡旋可以实现每秒108光子数输出. 同时发现极紫外波段的涡旋场和高斯场高次谐波产生具有相似相位匹配机制. 基于高次谐波产生的极紫外波段的偏振涡旋光为探究和操控原子分子量子态的含时演化动力学以及形成阿秒矢量光束提供了重要的方法和技术手段.
    Polarization is a property of vector beam that is widely used in many areas of science and technology. And vector beam is also called polarization vortex beam. Radially polarized beam and azimuthally polarized beam are the paradigm of vector beam. Extreme ultraviolet (EUV) vector beam could be applied in many fields such as diffractive imaging, Extreme Ultraviolet Lithography (EUVL), or ultrafast control of magnetic properties. In our experiments, a home-made EUV spectrometer was used to generate a tunable ultrafast EUV coherent light source based on high-order harmonic generation (HHG) by intense femtosecond laser. The apparatus features by using the plane grating in conical diffraction. The radially polarized vector beam and Gaussian beam with 800 nm, 35 fs laser pulses were applied to interact with Argon atoms, respectively. The high harmonic spectrums with a polarization singularity and a Gaussian distribution were observed. The experimental results demonstrate that the EUV vector beam could be transfered from near-infrared driven laser during the highly nonlinear interaction. The short-wavelength radiation with a polarization singularity can reach a photon flux of 108 per second. And the harmonic orders produced by Gaussian beam are significantly higher than that of vector field. The mechanism of macroscopic phase matching was discussed. It indicates that the phase matching for vector harmonic yields is similar with that driven by a Gaussian beam. In this case, EUV vector beam through HHG has been obtained, which provides one important method for attosecond vector pulses and opens new possibilities for exploring and manipulating the time-dependent evolution of quantum states in atom and molecule.
      通信作者: 马日, rma@jlu.edu.cn
    • 基金项目: 国家级-基于雪崩电离的磁阻效应及其机理研究(91750104)
      Corresponding author: Ma Ri, rma@jlu.edu.cn
    [1]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [2]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [3]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935Google Scholar

    [4]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [5]

    Westpha V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377Google Scholar

    [6]

    雷铭 2009 博士学位论文 (西安: 中国科学院)

    Lei M 2009 Ph. D. Dissertation (Xian: Chinese Academy of Sciences) (in Chinese)

    [7]

    Veenendaal M V, McNulty I 2007 Phys. Rev. Lett. 98 157401Google Scholar

    [8]

    Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F, Roso L 2010 Opt. Express 12 1367

    [9]

    Ribič P R, Rösner B, Gauthier D, Allaria E, Döring F, Foglia L, Giannessi L, Mahne N, Manfredda M, Masciovecchio C, Mincigrucci R, Mirian N, Principi E, Roussel E, Simoncig A, Spampinati S, David C, Ninno G D 2017 Phys. Rev. X 7 031036

    [10]

    Totzeck M 1991 J. Opt. Soc. Am. 8 27

    [11]

    Hall G D 1996 Opt. Lett. 21 9Google Scholar

    [12]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733Google Scholar

    [13]

    Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar

    [14]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [15]

    Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455Google Scholar

    [16]

    Meier M, Romano V, Feurer T 2007 Appl. Phys. A 86 329Google Scholar

    [17]

    Salamin Y I, Harman Z, Keitel C H 2008 Phys. Rev. Lett. 100 155004Google Scholar

    [18]

    Marceau V, Varin C, Brabec, Piché M 2013 Phys. Rev. Lett. 111 224801Google Scholar

    [19]

    Guclu C, Veysi M, Capolino F 2016 ACS Photonics 3 2049Google Scholar

    [20]

    Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, Sola Í J 2017 Optick 4 520Google Scholar

    [21]

    Matsuba S, Kawase K, Miyamoto A, Sasaki S, Fujimoto M, Konomi T, Yamamoto N, Hosaka M, Katoh M 2018 Appl. Phys. Lett. 113 021106Google Scholar

    [22]

    ĽHuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774

    [23]

    Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M, Hernandez-Garcia C 2019 Science 364 1253

    [24]

    Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mücke O D, Kärtner F X 2017 Light Sci. Appl. 6 e16187Google Scholar

    [25]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [26]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [27]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [28]

    Hernández-García C 2017 Nat. Phys. 13 327Google Scholar

    [29]

    Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar

    [30]

    Niu Y, Liu F Y, Liang H J, Liu Y, Yang Y J, Ma R, Ding D J 2017 Opt. Commun. 397 118Google Scholar

    [31]

    Liang H J, Wang Q X, Fan X, Shan L Y, Feng S, Yan B, Ma R, Xu H F 2018 Chin. J. Chem. Phys. 4 31

    [32]

    牛永 2017 博士学位论文 (长春: 吉林大学)

    Niu Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [33]

    Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901

    [34]

    Frassetto, Poletto L F 2009 Appl. Opt. 48 5363Google Scholar

    [35]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar

    [36]

    Rudawski P, Heyl C M, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F, Kim B, Johnsson P, L’Huillier A 2013 Rev. Sci. Instrum. 84 073103Google Scholar

  • 图 1  高次谐波产生光谱仪及单色仪实验光路示意图

    Fig. 1.  Sketch of the spectrometer and monochromator with HHG.

    图 2  使用激光能量为1.0 mJ, 800 nm, 35 fs线偏高斯光束和径向偏振光束驱动90 torr的氩原子产生的HHG光谱的远场强度分布 (a)高斯光场驱动的部分高次谐波谱; (b)图(a)对应的积分谱; (c)径向偏振光场驱动的涡旋高次谐波谱; (d)图(c)对应的积分谱. x阶谐波在图中标记为Hx

    Fig. 2.  Part of the HHG spectrum of Ar atoms at 90 torr irradiated by a 800 nm, 35 fs linearly polarized and radially polarized driving laser field with laser energy of 1.0 mJ: (a) Part of the HHG spectrum produced by a Gaussian driving beam; (b) the corresponding integrated HHG intensity; (c) part of the HHG spectrum produced by a radially polarized driving beam; (d) the corresponding integrated HHG intensity. The x-order of the harmonics are labeled as Hx in the figure.

    图 3  高斯光束和径向偏振光束产生的21阶极紫外光的远场强度分布 (a)高斯光束产生的极紫外光场; (b)径向偏振光束产生的极紫外涡旋场

    Fig. 3.  Far-field intensity distributions of EUV light with the orders of 21st generated with Gaussian beam and radially polarized beam: (a) EUV generated by Gaussian beam; (b) EUV vortex generated by radially polarized beam.

    图 4  径向偏振光束产生的不同级次谐波的极紫外涡旋光场的远场强度分布(内插图)和直径分布

    Fig. 4.  Far-field intensity distributions of EUV vortex generated with radially polarized beam and diameters of the EUV vortex rings.

    图 5  高斯和涡旋高次谐波在0.9和1.2 mJ光强下随压力的变化趋势 (a) 19阶谐波; (b) 23阶谐波

    Fig. 5.  Yield of the modes as a function of the gas pressure and laser energy for the harmonic and vortex harmonic: (a) Harmonic with the orders of 19th; (b) harmonic with the orders of 23rd.

  • [1]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [2]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [3]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935Google Scholar

    [4]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [5]

    Westpha V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377Google Scholar

    [6]

    雷铭 2009 博士学位论文 (西安: 中国科学院)

    Lei M 2009 Ph. D. Dissertation (Xian: Chinese Academy of Sciences) (in Chinese)

    [7]

    Veenendaal M V, McNulty I 2007 Phys. Rev. Lett. 98 157401Google Scholar

    [8]

    Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F, Roso L 2010 Opt. Express 12 1367

    [9]

    Ribič P R, Rösner B, Gauthier D, Allaria E, Döring F, Foglia L, Giannessi L, Mahne N, Manfredda M, Masciovecchio C, Mincigrucci R, Mirian N, Principi E, Roussel E, Simoncig A, Spampinati S, David C, Ninno G D 2017 Phys. Rev. X 7 031036

    [10]

    Totzeck M 1991 J. Opt. Soc. Am. 8 27

    [11]

    Hall G D 1996 Opt. Lett. 21 9Google Scholar

    [12]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733Google Scholar

    [13]

    Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar

    [14]

    Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar

    [15]

    Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455Google Scholar

    [16]

    Meier M, Romano V, Feurer T 2007 Appl. Phys. A 86 329Google Scholar

    [17]

    Salamin Y I, Harman Z, Keitel C H 2008 Phys. Rev. Lett. 100 155004Google Scholar

    [18]

    Marceau V, Varin C, Brabec, Piché M 2013 Phys. Rev. Lett. 111 224801Google Scholar

    [19]

    Guclu C, Veysi M, Capolino F 2016 ACS Photonics 3 2049Google Scholar

    [20]

    Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, Sola Í J 2017 Optick 4 520Google Scholar

    [21]

    Matsuba S, Kawase K, Miyamoto A, Sasaki S, Fujimoto M, Konomi T, Yamamoto N, Hosaka M, Katoh M 2018 Appl. Phys. Lett. 113 021106Google Scholar

    [22]

    ĽHuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774

    [23]

    Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M, Hernandez-Garcia C 2019 Science 364 1253

    [24]

    Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mücke O D, Kärtner F X 2017 Light Sci. Appl. 6 e16187Google Scholar

    [25]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [26]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [27]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [28]

    Hernández-García C 2017 Nat. Phys. 13 327Google Scholar

    [29]

    Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar

    [30]

    Niu Y, Liu F Y, Liang H J, Liu Y, Yang Y J, Ma R, Ding D J 2017 Opt. Commun. 397 118Google Scholar

    [31]

    Liang H J, Wang Q X, Fan X, Shan L Y, Feng S, Yan B, Ma R, Xu H F 2018 Chin. J. Chem. Phys. 4 31

    [32]

    牛永 2017 博士学位论文 (长春: 吉林大学)

    Niu Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [33]

    Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901

    [34]

    Frassetto, Poletto L F 2009 Appl. Opt. 48 5363Google Scholar

    [35]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar

    [36]

    Rudawski P, Heyl C M, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F, Kim B, Johnsson P, L’Huillier A 2013 Rev. Sci. Instrum. 84 073103Google Scholar

  • [1] 于术娟, 刘竹琴, 李雁鹏. 对称分子${\text{H}}_{\text{2}}^{\text{ + }}$在强短波激光场中高次谐波椭偏率性质的研究. 物理学报, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [2] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲. 物理学报, 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [3] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [4] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [5] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波. 物理学报, 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [6] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究. 物理学报, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [7] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构. 物理学报, 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [8] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [9] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生. 物理学报, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [10] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [13] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [15] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色场中高次谐波转化效率提高的数值研究. 物理学报, 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [16] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高. 物理学报, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [18] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [19] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [20] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
计量
  • 文章访问数:  10347
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-12-09
  • 刊出日期:  2020-02-20

/

返回文章
返回