-
突破传统涡旋光场束缚, 发展短波极紫外涡旋光场是实现阿秒脉冲偏振控制的有效途径. 本研究利用自制的平场光栅光谱仪和超快时间保持的单色仪, 以800 nm, 35 fs高斯或具有偏振奇点的涡旋光脉冲驱动诱导氩原子产生高次谐波, 分别获得相应的高次谐波光谱以及谐波谱单阶光源的分布. 实验结果表明, 基于高次谐波产生实现近红外波段的涡旋光束特性转移到极紫外波段, 优化后的极紫外涡旋可以实现每秒108光子数输出. 同时发现极紫外波段的涡旋场和高斯场高次谐波产生具有相似相位匹配机制. 基于高次谐波产生的极紫外波段的偏振涡旋光为探究和操控原子分子量子态的含时演化动力学以及形成阿秒矢量光束提供了重要的方法和技术手段.Polarization is a property of vector beam that is widely used in many areas of science and technology. And vector beam is also called polarization vortex beam. Radially polarized beam and azimuthally polarized beam are the paradigm of vector beam. Extreme ultraviolet (EUV) vector beam could be applied in many fields such as diffractive imaging, Extreme Ultraviolet Lithography (EUVL), or ultrafast control of magnetic properties. In our experiments, a home-made EUV spectrometer was used to generate a tunable ultrafast EUV coherent light source based on high-order harmonic generation (HHG) by intense femtosecond laser. The apparatus features by using the plane grating in conical diffraction. The radially polarized vector beam and Gaussian beam with 800 nm, 35 fs laser pulses were applied to interact with Argon atoms, respectively. The high harmonic spectrums with a polarization singularity and a Gaussian distribution were observed. The experimental results demonstrate that the EUV vector beam could be transfered from near-infrared driven laser during the highly nonlinear interaction. The short-wavelength radiation with a polarization singularity can reach a photon flux of 108 per second. And the harmonic orders produced by Gaussian beam are significantly higher than that of vector field. The mechanism of macroscopic phase matching was discussed. It indicates that the phase matching for vector harmonic yields is similar with that driven by a Gaussian beam. In this case, EUV vector beam through HHG has been obtained, which provides one important method for attosecond vector pulses and opens new possibilities for exploring and manipulating the time-dependent evolution of quantum states in atom and molecule.
-
Keywords:
- high-order harmonic generation /
- extreme ultraviolet vortex field /
- phase matching /
- polarization singularities
[1] 刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar
Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar
[2] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar
[3] Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935Google Scholar
[4] Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar
[5] Westpha V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377Google Scholar
[6] 雷铭 2009 博士学位论文 (西安: 中国科学院)
Lei M 2009 Ph. D. Dissertation (Xian: Chinese Academy of Sciences) (in Chinese)
[7] Veenendaal M V, McNulty I 2007 Phys. Rev. Lett. 98 157401Google Scholar
[8] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F, Roso L 2010 Opt. Express 12 1367
[9] Ribič P R, Rösner B, Gauthier D, Allaria E, Döring F, Foglia L, Giannessi L, Mahne N, Manfredda M, Masciovecchio C, Mincigrucci R, Mirian N, Principi E, Roussel E, Simoncig A, Spampinati S, David C, Ninno G D 2017 Phys. Rev. X 7 031036
[10] Totzeck M 1991 J. Opt. Soc. Am. 8 27
[11] Hall G D 1996 Opt. Lett. 21 9Google Scholar
[12] Schoonover R W, Visser T D 2006 Opt. Express 14 5733Google Scholar
[13] Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar
[14] Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar
[15] Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455Google Scholar
[16] Meier M, Romano V, Feurer T 2007 Appl. Phys. A 86 329Google Scholar
[17] Salamin Y I, Harman Z, Keitel C H 2008 Phys. Rev. Lett. 100 155004Google Scholar
[18] Marceau V, Varin C, Brabec, Piché M 2013 Phys. Rev. Lett. 111 224801Google Scholar
[19] Guclu C, Veysi M, Capolino F 2016 ACS Photonics 3 2049Google Scholar
[20] Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, Sola Í J 2017 Optick 4 520Google Scholar
[21] Matsuba S, Kawase K, Miyamoto A, Sasaki S, Fujimoto M, Konomi T, Yamamoto N, Hosaka M, Katoh M 2018 Appl. Phys. Lett. 113 021106Google Scholar
[22] ĽHuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774
[23] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M, Hernandez-Garcia C 2019 Science 364 1253
[24] Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mücke O D, Kärtner F X 2017 Light Sci. Appl. 6 e16187Google Scholar
[25] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[26] Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar
[27] Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar
[28] Hernández-García C 2017 Nat. Phys. 13 327Google Scholar
[29] Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar
[30] Niu Y, Liu F Y, Liang H J, Liu Y, Yang Y J, Ma R, Ding D J 2017 Opt. Commun. 397 118Google Scholar
[31] Liang H J, Wang Q X, Fan X, Shan L Y, Feng S, Yan B, Ma R, Xu H F 2018 Chin. J. Chem. Phys. 4 31
[32] 牛永 2017 博士学位论文 (长春: 吉林大学)
Niu Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[33] Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901
[34] Frassetto, Poletto L F 2009 Appl. Opt. 48 5363Google Scholar
[35] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar
[36] Rudawski P, Heyl C M, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F, Kim B, Johnsson P, L’Huillier A 2013 Rev. Sci. Instrum. 84 073103Google Scholar
-
图 2 使用激光能量为1.0 mJ, 800 nm, 35 fs线偏高斯光束和径向偏振光束驱动90 torr的氩原子产生的HHG光谱的远场强度分布 (a)高斯光场驱动的部分高次谐波谱; (b)图(a)对应的积分谱; (c)径向偏振光场驱动的涡旋高次谐波谱; (d)图(c)对应的积分谱. x阶谐波在图中标记为Hx
Fig. 2. Part of the HHG spectrum of Ar atoms at 90 torr irradiated by a 800 nm, 35 fs linearly polarized and radially polarized driving laser field with laser energy of 1.0 mJ: (a) Part of the HHG spectrum produced by a Gaussian driving beam; (b) the corresponding integrated HHG intensity; (c) part of the HHG spectrum produced by a radially polarized driving beam; (d) the corresponding integrated HHG intensity. The x-order of the harmonics are labeled as Hx in the figure.
-
[1] 刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar
Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar
[2] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar
[3] Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935Google Scholar
[4] Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar
[5] Westpha V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377Google Scholar
[6] 雷铭 2009 博士学位论文 (西安: 中国科学院)
Lei M 2009 Ph. D. Dissertation (Xian: Chinese Academy of Sciences) (in Chinese)
[7] Veenendaal M V, McNulty I 2007 Phys. Rev. Lett. 98 157401Google Scholar
[8] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F, Roso L 2010 Opt. Express 12 1367
[9] Ribič P R, Rösner B, Gauthier D, Allaria E, Döring F, Foglia L, Giannessi L, Mahne N, Manfredda M, Masciovecchio C, Mincigrucci R, Mirian N, Principi E, Roussel E, Simoncig A, Spampinati S, David C, Ninno G D 2017 Phys. Rev. X 7 031036
[10] Totzeck M 1991 J. Opt. Soc. Am. 8 27
[11] Hall G D 1996 Opt. Lett. 21 9Google Scholar
[12] Schoonover R W, Visser T D 2006 Opt. Express 14 5733Google Scholar
[13] Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar
[14] Youngworth K S, Brown T G 2000 Opt. Express 7 77Google Scholar
[15] Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455Google Scholar
[16] Meier M, Romano V, Feurer T 2007 Appl. Phys. A 86 329Google Scholar
[17] Salamin Y I, Harman Z, Keitel C H 2008 Phys. Rev. Lett. 100 155004Google Scholar
[18] Marceau V, Varin C, Brabec, Piché M 2013 Phys. Rev. Lett. 111 224801Google Scholar
[19] Guclu C, Veysi M, Capolino F 2016 ACS Photonics 3 2049Google Scholar
[20] Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, Sola Í J 2017 Optick 4 520Google Scholar
[21] Matsuba S, Kawase K, Miyamoto A, Sasaki S, Fujimoto M, Konomi T, Yamamoto N, Hosaka M, Katoh M 2018 Appl. Phys. Lett. 113 021106Google Scholar
[22] ĽHuillier A, Balcou P 1993 Phys. Rev. Lett. 70 774
[23] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M, Hernandez-Garcia C 2019 Science 364 1253
[24] Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mücke O D, Kärtner F X 2017 Light Sci. Appl. 6 e16187Google Scholar
[25] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[26] Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar
[27] Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar
[28] Hernández-García C 2017 Nat. Phys. 13 327Google Scholar
[29] Niu Y, Liang H J, Liu Y, Liu F Y, Ma R, Ding D J 2017 Chin. Phys. B 26 074222Google Scholar
[30] Niu Y, Liu F Y, Liang H J, Liu Y, Yang Y J, Ma R, Ding D J 2017 Opt. Commun. 397 118Google Scholar
[31] Liang H J, Wang Q X, Fan X, Shan L Y, Feng S, Yan B, Ma R, Xu H F 2018 Chin. J. Chem. Phys. 4 31
[32] 牛永 2017 博士学位论文 (长春: 吉林大学)
Niu Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[33] Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901
[34] Frassetto, Poletto L F 2009 Appl. Opt. 48 5363Google Scholar
[35] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar
[36] Rudawski P, Heyl C M, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F, Kim B, Johnsson P, L’Huillier A 2013 Rev. Sci. Instrum. 84 073103Google Scholar
计量
- 文章访问数: 10588
- PDF下载量: 280
- 被引次数: 0