搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性

唐娜 杨雪滢 宋琳 张娟 李晓霖 周志坤 石玉仁

引用本文:
Citation:

三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性

唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁

Gap solitons and their stabilities in a quasi one-dimensional Bose-Einstein condensate under three-body interaction

Tang Na, Yang Xue-Ying, Song Lin, Zhang Juan, Li Xiao-Lin, Zhou Zhi-Kun, Shi Yu-Ren
PDF
HTML
导出引用
  • 具有三体相互作用的玻色-爱因斯坦凝聚体(Bose-Einstein Condensate, BEC)束缚于雅可比椭圆周期势中, 在平均场近似下可用3—5次Gross-Pitaevskii方程(GPE)描述. 首先利用多重尺度法对该系统进行了理论分析, 将GPE化为一定态非线性薛定谔方程(Nonlinear Schrödinger Equation, NLSE), 并给出了一类带隙孤子的解析表达式. 然后采用牛顿共轭梯度法数值得到了该系统中存在的两类带隙孤子, 发现孤子的振幅随着三体相互作用的增强而减小, 这与多重尺度法分析所得结论一致. 最后用时间劈裂傅里叶谱方法对GPE进行长时间动力学演化以考察孤子的稳定性, 发现系统中既存在稳定的带隙孤子, 也存在不稳定的带隙孤子, 且外势的模数会对孤子的结构和稳定性产生明显影响.
    We study the gap solitons and their stability properties in a Bose-Einstein condensation (BEC) under three-body interaction loaded in a Jacobian elliptic sine potential, which can be described by a cubic-quintic Gross-Pitaevskii equation (GPE) in the mean-field approximation. Firstly, the GPE is transformed into a stationary cubic-quintic nonlinear Schrödinger equation (NLSE) by the multi-scale method. A class of analytical solution of the NLSE is presented to describe the gap solitons. It is shown analytically that the amplitude of the gap soliton decreases as the two-body or three-body interaction strength increases. Secondly, many kinds of gap solitons, including the fundamental soliton and the sub-fundamental soliton, are obtained numerically by the Newton-Conjugate-Gradient (NCG) method. There are two families of fundamental solitons: one is the on-site soliton and the other is the off-site soliton. All of them are bifurcated from the Bloch band. Both in-phase and out-phase dipole solitons for off-site solitons do exist in such a nonlinear system. The numerical results also indicate that the amplitude of the gap soliton decreases as the nonlinear interaction strength increases, which accords well with the analytical prediction. Finally, long-time dynamical evolution for the GPE is performed by the time-splitting Fourier spectrum method to investigate the dynamical stability of gap solitons. It is shown that the on-site solitons are always dynamically stable, while the off-site solitons are always unstable. However, both stable and unstable in-phase or out-phase dipole solitons, which are not bifurcated from the Bloch band, indeed exist. For a type of out-phase soliton, there is a critical value $ q_c$ when the chemical potential μ is fixed. The solitons are linearly stable as $ q>q_c$, while they are linearly unstable for $ q<q_c$. Therefore, the modulus q plays an important role in the stability of gap solitons. One can change the dynamical behavior of gap solitons by adjusting the modulus of external potential in experiment. We also find that there exists a kind of gap soliton, in which the soliton is dynamically unstable if only the two-body interaction is considered, but it becomes stable when the three-body interaction is taken into account. This indicates that the three-body interaction has influence on the stability of gap solitons.
      通信作者: 石玉仁, shiyr@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11565021), 西北师范大学青年教师科研能力提升计划(批准号: NWNU-LKQN-16-3), 西北师范大学“创新创业能力提升计划”(批准号: NWNU2019KT232)支持的项目
      Corresponding author: Shi Yu-Ren, shiyr@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11565021) and the Scientific Research Foundation of NWNU (Grant Nos. NWNU-LKQN-16-3, NWNU2019KT232)
    [1]

    Bose S N 1924 Z. Phy. 26 178

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [3]

    Tsurumi T 2000 Int. J. Mod. Phys. B 14 655Google Scholar

    [4]

    Malomed B A 2006 Soltion Management in Periodic Systems (Vol. 1) (Berlin: Springer) pp 1—6

    [5]

    Wang D S, Hu X H, Hu J, Liu W M 2010 Phys. Rev. A 81 025604Google Scholar

    [6]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [7]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [8]

    Ku M J H, Ji W, Mukherjee B, Guardado S E, Cheuk L W, Yefash T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [9]

    Yu H Y, Yan J R, Xie Q T 2004 Chin. Phys. Lett. 21 1881Google Scholar

    [10]

    Wang Z X, Zhang X H, Shen K 2008 Chin. Phys. B 17 3270Google Scholar

    [11]

    Li J H, Kuang L M 2003 Commun. Theor. Phys. 39 44Google Scholar

    [12]

    EtienneW B, Alidou M D, Timoléon C K 2008 Phys. Rev. E 77 046216Google Scholar

    [13]

    Zhang W, Wright E M, Pu H, Meystre P 2003 Phys. Rev. A 68 023605Google Scholar

    [14]

    Abdullaev F Kh, Gammal A, Tomio L, Frederico T 2001 Phys. Rev. A 63 043604Google Scholar

    [15]

    Chang N N, Yu Z F, Zhang A X, Xue J K 2017 Chin. Phys. B 26 115202Google Scholar

    [16]

    Etienne W, Porsezian K, Alidou M, Timoléon C K 2013 Phys. Lett. A 377 262Google Scholar

    [17]

    Chin C, Kraemer T, Mark M, Herbig J, Waldburger P, Nagerl H C, Grimm R 2005 Phys. Rev. Lett. 94 123201Google Scholar

    [18]

    Peng P, Li G Q 2009 Chin. Phys. B 18 3221Google Scholar

    [19]

    阮航宇, 陈一新 2001 物理学报 4 0586

    Ruan H Y, Chen Y X 2001 Acta. Phys. Sin. 4 0586

    [20]

    Saito H, Ueda M 2001 Phys. Rev. Lett. 86 1406Google Scholar

    [21]

    Fiho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [22]

    Meng D X, Li K Z 2019 Phys. Rev. Lett. 33 19150123

    [23]

    Wahlquist H D, Estabreok F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [24]

    Radhakrishnan R, Sahadcvan R, Lakshmanan M 1995 Chaos, Solitons Fractals 5 2315Google Scholar

    [25]

    Weiss J, Tabor M, Carneval G 1983 J. Math. Phys. 24 6

    [26]

    Wang D S, Liu J 2018 Appl. Math. Lett. 79 211Google Scholar

    [27]

    文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐 2019 物理学报 68 080301Google Scholar

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301Google Scholar

    [28]

    Dmitry E P, Andrey A S, Yuri S K 2004 Phys. Rev. E 70 036618Google Scholar

    [29]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Xi Z H, Wang D S, Shi Y R 2019 Physica A 528 1

    [30]

    Akozbek N, John S 1998 Phys. Rev. E 57 2287Google Scholar

    [31]

    Mingaleev S F, Kivshar Yu S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [32]

    Louis P J Y, Ostrovskaya E A, Kivshar Yu S 2005 Phys. Rev. A 71 023612Google Scholar

    [33]

    Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein M, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [34]

    Zhu J, Bian C L, Wang H C 2019 Chin. Phys. B 28 093701Google Scholar

    [35]

    Li Y, Hai W H 2005 Commun. Theor. Phys. 44 840Google Scholar

    [36]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [37]

    Bao W 2007 Dynamics In Models Of Coarsening, Coagulation, Condensation And Quantization. (Vol. 1) (Singpore: World Scientific) p147—149

    [38]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) p269−283

    [39]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [40]

    Catarina C, Vitor Nistor, Yu Q 2017 Operator Theory: Advances and Applications (Vol. 1) (Berlin: Springer) p20−24

    [41]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [42]

    唐恒永 1985 北京工业大学学报 11 69

    Tang H Y 1985 J. BJUT. Tech. 11 69

    [43]

    Royer C W, Neill M O’, Wright S J 2018 Math. Program. 1-38

    [44]

    Zhang Q, Li S, Lei Y, Zhang X D 2012 J. Control Theory Appl. 10 223Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Adhikari S F, Malomed B A 2007 Europhys. Lett. 79 50003Google Scholar

  • 图 1  3−5次GPE的单峰带隙孤子($V_0=4$) (a), (b) $q=0.1$; (c), (d) $q=0.99$. 阴影部分表示外势$V(x)$低处

    Fig. 1.  Profiles of singl-hump gap solitons of the cubic-quintic GPE ($V_0=4$): (a), (b) $q$ = 0.1; (c), (d) $q$ = 0.99. Shaded regions represent lattice sites, i.e., regions of low potential values $V(x)$.

    图 2  单峰带隙孤子的振幅随相互作用强度的变化($V_0=4$)

    Fig. 2.  Amplitudes of single-hump gap solitons v.s. nonlinear interaction strength.

    图 3  on-site孤子三体相互作用能量和两体相互作用能量的比

    Fig. 3.  The ratio of three-body energy to two-body energy for on-site solitons with different interaction strength.

    图 4  3−5次GPE的同相偶极孤子和异相偶极孤子($V_0=4$) (a), (b) $q=0.1; $ (c), (d) $q=0.99$. 阴影部分表示外势$V(x)$低处

    Fig. 4.  Profiles of double-hump gap solitons of the cubic-quintic GPE ($V_0=4$) (a), (b) $q$ = 0.1; (c), (d) $q$ = 0.99. Shaded regions represent lattice sites, i.e., regions of low potential values $V(x)$.

    图 5  不同类型带隙孤子的动力学演化 (a) on-site孤子; (b) 同相偶极孤子; (c), (d) 异相偶极孤子

    Fig. 5.  Contour plots of $|{\varPsi(x, t)}|$ for perturbed gap solitons: (a) On-site soliton; (b) in-phase dipole soliton; (c), (d) out-phase dipole soliton.

    图 6  (a), (c) 第一带隙中的亚基本带隙孤子(红色). 蓝线表示外势; (b), (d) 亚基本带隙孤子的动力学演化

    Fig. 6.  (a), (c) Profiles of sub-fundamental gap solitons (red lines) lie in the first bandgap. The solid blue lines denote the external potential; (b), (d) contour plots of $|{\varPsi(x, t)}|$ for perturbed gap solitons.

    图 7  第一带隙中同相偶极孤子 (a) $\eta=0$和(b) $\eta=-0.2$时的动力学演化

    Fig. 7.  Contour plots of $|{\varPsi(x, t)}|$ for in-phase dipole solitons lie in the first bandgap with (a) $\eta=0$ and (b) $\eta=-0.2$.

  • [1]

    Bose S N 1924 Z. Phy. 26 178

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [3]

    Tsurumi T 2000 Int. J. Mod. Phys. B 14 655Google Scholar

    [4]

    Malomed B A 2006 Soltion Management in Periodic Systems (Vol. 1) (Berlin: Springer) pp 1—6

    [5]

    Wang D S, Hu X H, Hu J, Liu W M 2010 Phys. Rev. A 81 025604Google Scholar

    [6]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [7]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [8]

    Ku M J H, Ji W, Mukherjee B, Guardado S E, Cheuk L W, Yefash T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [9]

    Yu H Y, Yan J R, Xie Q T 2004 Chin. Phys. Lett. 21 1881Google Scholar

    [10]

    Wang Z X, Zhang X H, Shen K 2008 Chin. Phys. B 17 3270Google Scholar

    [11]

    Li J H, Kuang L M 2003 Commun. Theor. Phys. 39 44Google Scholar

    [12]

    EtienneW B, Alidou M D, Timoléon C K 2008 Phys. Rev. E 77 046216Google Scholar

    [13]

    Zhang W, Wright E M, Pu H, Meystre P 2003 Phys. Rev. A 68 023605Google Scholar

    [14]

    Abdullaev F Kh, Gammal A, Tomio L, Frederico T 2001 Phys. Rev. A 63 043604Google Scholar

    [15]

    Chang N N, Yu Z F, Zhang A X, Xue J K 2017 Chin. Phys. B 26 115202Google Scholar

    [16]

    Etienne W, Porsezian K, Alidou M, Timoléon C K 2013 Phys. Lett. A 377 262Google Scholar

    [17]

    Chin C, Kraemer T, Mark M, Herbig J, Waldburger P, Nagerl H C, Grimm R 2005 Phys. Rev. Lett. 94 123201Google Scholar

    [18]

    Peng P, Li G Q 2009 Chin. Phys. B 18 3221Google Scholar

    [19]

    阮航宇, 陈一新 2001 物理学报 4 0586

    Ruan H Y, Chen Y X 2001 Acta. Phys. Sin. 4 0586

    [20]

    Saito H, Ueda M 2001 Phys. Rev. Lett. 86 1406Google Scholar

    [21]

    Fiho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [22]

    Meng D X, Li K Z 2019 Phys. Rev. Lett. 33 19150123

    [23]

    Wahlquist H D, Estabreok F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [24]

    Radhakrishnan R, Sahadcvan R, Lakshmanan M 1995 Chaos, Solitons Fractals 5 2315Google Scholar

    [25]

    Weiss J, Tabor M, Carneval G 1983 J. Math. Phys. 24 6

    [26]

    Wang D S, Liu J 2018 Appl. Math. Lett. 79 211Google Scholar

    [27]

    文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐 2019 物理学报 68 080301Google Scholar

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301Google Scholar

    [28]

    Dmitry E P, Andrey A S, Yuri S K 2004 Phys. Rev. E 70 036618Google Scholar

    [29]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Xi Z H, Wang D S, Shi Y R 2019 Physica A 528 1

    [30]

    Akozbek N, John S 1998 Phys. Rev. E 57 2287Google Scholar

    [31]

    Mingaleev S F, Kivshar Yu S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [32]

    Louis P J Y, Ostrovskaya E A, Kivshar Yu S 2005 Phys. Rev. A 71 023612Google Scholar

    [33]

    Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein M, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [34]

    Zhu J, Bian C L, Wang H C 2019 Chin. Phys. B 28 093701Google Scholar

    [35]

    Li Y, Hai W H 2005 Commun. Theor. Phys. 44 840Google Scholar

    [36]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [37]

    Bao W 2007 Dynamics In Models Of Coarsening, Coagulation, Condensation And Quantization. (Vol. 1) (Singpore: World Scientific) p147—149

    [38]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) p269−283

    [39]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [40]

    Catarina C, Vitor Nistor, Yu Q 2017 Operator Theory: Advances and Applications (Vol. 1) (Berlin: Springer) p20−24

    [41]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [42]

    唐恒永 1985 北京工业大学学报 11 69

    Tang H Y 1985 J. BJUT. Tech. 11 69

    [43]

    Royer C W, Neill M O’, Wright S J 2018 Math. Program. 1-38

    [44]

    Zhang Q, Li S, Lei Y, Zhang X D 2012 J. Control Theory Appl. 10 223Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Adhikari S F, Malomed B A 2007 Europhys. Lett. 79 50003Google Scholar

  • [1] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学. 物理学报, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [2] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性. 物理学报, 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [3] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [5] 赵军亚, 李晨旭, 马晓栋. 碟形玻色-爱因斯坦凝聚体中(0, 0, 2)剪刀模的朗道阻尼和频移. 物理学报, 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [7] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [8] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [9] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [10] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [11] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [12] 李明, 陈鼎汉, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体对光场压缩性质的影响. 物理学报, 2013, 62(18): 183201. doi: 10.7498/aps.62.183201
    [13] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应. 物理学报, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [14] 李明. 原子玻色-爱因斯坦凝聚体对V型三能级原子激光压缩性质的影响. 物理学报, 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [15] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [16] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [17] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [18] 徐 岩, 贾多杰, 李希国, 左 维, 李发伸. 大N近似下玻色-爱因斯坦凝聚体中单个涡旋态的解. 物理学报, 2004, 53(9): 2831-2834. doi: 10.7498/aps.53.2831
    [19] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  9720
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 修回日期:  2019-10-12
  • 上网日期:  2019-12-05
  • 刊出日期:  2020-01-05

/

返回文章
返回