搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑界面接触热阻的一维复合结构的热整流机理

赵建宁 刘冬欢 魏东 尚新春

引用本文:
Citation:

考虑界面接触热阻的一维复合结构的热整流机理

赵建宁, 刘冬欢, 魏东, 尚新春

Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance

Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun
PDF
HTML
导出引用
  • 建立了考虑变截面、变热导率及界面接触热阻效应的组合热整流结构的温度场及热整流系数的理论模型和有限元解. 数值算例证明了本文模型及算法的可靠性, 进而通过参数影响研究确定了若干几何及材料参数对结构热整流系数的影响规律, 揭示界面接触热阻对热整流效果的影响机理. 研究结果表明长度比、截面半径变化率、热导率、边界条件温差和界面接触热阻等因素必须通过优化设计才能得到最大的热整流系数, 同时界面接触热阻的引入也为调控热整流系数提供了一条新的途径.
    Thermal rectification refers to the phenomenon that heat fluxes or equivalent thermal conductivities are different under the same temperature difference when temperature gradient directions are different. The nature of the thermal rectification is that the structure has different effective thermal conductivities in different directions. Most of previous studies focused on thermal rectification of temperature-dependent thermal conductivity materials or variable cross section area structure, and the effect of thermal contact resistance at the interface was investigated very rarely. In the present paper we present the analytical and finite element numerical solution of temperature field and thermal rectification ratios of a composite structure with variable cross section area and thermal conductivity under different interface thermal contact resistances. The prescribed temperature boundary condition is introduced by penalty method, and the temperature jump condition at the interface is implemented by the definition of thermal contact resistance directly. The nonlinear heat conduction problem caused by temperature-dependent thermal conductivity and interface thermal contact resistance is then solved with a direct iteration scheme. Comparisons between experimental results and the present theoretical and numerical results show the feasibility of the proposed model. Then parameter investigations are also conducted to reveal the effect of some key geometric and material parameters. Numerical results show that thermal contact resistance plays an important role in the temperature field and thermal rectification ratio of the two-segment thermal rectifier. With the increase of the length ratio, thermal ratification ratio increases first and decreases then, and the optimal length ratio varies with both thermal contact resistance and cross-section radius change rate of the two segments. In general, the existence of thermal contact resistance can increase the total thermal resistance of the rectifier and magnify the distinction of the heat flux in forward and reverse cases. However, if the thermal contact resistance is too large, this distinction will decrease and correspondingly the thermal rectification ratio becomes low. With the increase of the boundary temperature difference, thermal rectification ratio increases due to the effect of temperature-dependent thermal conductivity. In the present study, we propose a theoretical and numerical approach to designing and optimizing the length ratio, cross-section radius change rate, thermal conductivity, boundary temperature difference and interface thermal contact resistance to obtain the maximal thermal rectification ratio of a bi-segment thermal rectifier, as well as the manipulation of thermal flux in engineering applications.
      通信作者: 刘冬欢, liudh@ustb.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(11772045)
      Corresponding author: Liu Dong-Huan, liudh@ustb.edu.cn
    [1]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [2]

    Zhu J, Hippalgaonkar K, Shen S, Wang K V, Abate Y, Lee S, Wu J Q, Yin X B, Majumdar A, Zhang X 2014 Nano. Lett. 14 4867Google Scholar

    [3]

    Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar

    [4]

    Li N B, Ren J, Wang L, Zhang G, Hänggi P, Li B W 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [5]

    单小东, 王沫然 2014 工程热物理学报 35 1401Google Scholar

    Shan X D, Wang M R 2014 J. Eng. Thermophys. 35 1401Google Scholar

    [6]

    张茂平, 钟伟荣, 艾保全 2011 物理学报 60 060511Google Scholar

    Zhang M P, Zhong W R, Ai B Q 2011 Acta Phys. Sin. 60 060511Google Scholar

    [7]

    温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 物理学报 64 216501Google Scholar

    Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar

    [8]

    Nobakht A Y, Gandomi Y A, Wang J Q, Bowman M H, Marable D C, Garrison B E, Kim D, Shin S 2018 Carbon. 132 565Google Scholar

    [9]

    Machrafi H, Lebon G, Jou D 2016 Int. J. Heat Mass Transfer. 97 603Google Scholar

    [10]

    鞠生宏, 梁新刚 2013 物理学报 62 026101Google Scholar

    Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar

    [11]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [12]

    李威, 冯妍卉, 陈阳, 张欣欣 2012 物理学报 61 136102Google Scholar

    Li W, Feng Y H, Chen Y, Zhang X X 2012 Acta Phys. Sin. 61 136102Google Scholar

    [13]

    Meng Z, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transfer. 147 118915Google Scholar

    [14]

    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [15]

    Aiyiti A, Zhang Z, Chen B, Hu S, Chen J, Xu X, Li B 2018 Carbon 140 673Google Scholar

    [16]

    Peyrard M 2006 Europhys. Lett. 76 49Google Scholar

    [17]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar

    [18]

    Shih T M, Gao Z J, Guo Z Q, Merlitz H, Pagni P J, Chen Z 2015 Sci. Rep. 5 12677Google Scholar

    [19]

    Sadat H, Le Dez V 2016 Mech. Res. Commun. 76 48Google Scholar

    [20]

    Go D B, Sen M 2010 J. Heat Transfer 132 124502Google Scholar

    [21]

    Majdi T, Pal S, Puri I K 2017 Int. J. Therm. Sci. 117 260Google Scholar

    [22]

    Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar

    [23]

    Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G, Liu L T 2012 Sci. Rep. 2 523Google Scholar

    [24]

    Dames C 2009 J. Heat Transfer 131 061301Google Scholar

    [25]

    Yang Y, Chen H, Wang H, Li N B, Zhang L F 2018 Phys. Rev. E 98 042131Google Scholar

    [26]

    Sayer R A 2013 Proceedings of the ASME International Mechanical Engineering Congress and Exposition-2012, Albuquerque, November 9–15, 2012 p86065

    [27]

    Chumak K, Martynyak R 2012 Int. J. Heat Mass Transfer 55 5603Google Scholar

    [28]

    朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar

    Zhu Y X, Wang J, Luo S, Wang J, Xia G D 2016 Sci. China, Ser. 46 175Google Scholar

    [29]

    汤宇轩, 李凡, 王淼, 王中元, 王军, 夏国栋 2018 中国科技论文 13 1244Google Scholar

    Tang Y X, Li F, Wang M, Wang Z Y, Wang J, Xia G D 2018 China Science Paper 13 1244Google Scholar

    [30]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [31]

    Reddy J N 1993 An Introduction to The Finite Element Method (2nd Ed.) (New York: McGraw-Hill) pp105–117

    [32]

    Cengel Y A 2007 Heat and Mass Transfer: A Practical Approach (3rd Ed.) (Boston: McGraw-Hill) pp844–846

  • 图 1  变截面变热导率一维组合热整流器模型 (a) 热量自左向右正向流动; (b) 热量自右向左反向流动

    Fig. 1.  Schematic of the one-dimensional composite thermal rectifier model with variable cross section area and thermal conductivity: (a) Forward heat flows from left to right; (b) reverse heat flows from right to left.

    图 2  热整流器的有限元模型

    Fig. 2.  Finite element model of the thermal rectifier.

    图 3  热整流器的温度场分布对比 (Reverse与Forward分别代表LaCoO3和La0.7Sr0.3CoO3材料位于高温端的情况)

    Fig. 3.  Comparisons of temperature distribution of the thermal rectifier (Reverse and Forward denote the case of that LaCoO3 and La0.7Sr0.3CoO3 materials locate in high-temperature side respectively).

    图 4  不同温差下热整流器的响应 (a) 热量; (b) 热整流系数

    Fig. 4.  Response of the thermal rectifier with different temperature differences: (a) Heat flux; (b) thermal rectification ratio.

    图 5  横截面面积变化趋势与截面半径变化率的关系

    Fig. 5.  Relationship between cross-section area and cross-section radius change rate.

    图 6  不同长度比热整流器的温度场 (a) 长度比0.5; (b) 长度比0.2

    Fig. 6.  Temperature distribution of the thermal rectifier with different length ratios: (a) Length ratio is 0.5; (b) length ratio is 0.2.

    图 7  不同接触热阻下热整流系数随长度比的变化 (a) ${\beta _{{x_1}}} = $$ - 0.03$, ${\beta _{{x_2}}} = 0.03 $; (b) ${\beta _{{x_1}}} = - 0.03$, ${\beta _{{x_2}}} = - 0.03 $

    Fig. 7.  Variations of thermal rectification coefficient with length ratio under different contact thermal resistance: (a) ${\beta _{{x_1}}} = - 0.03, \; {\beta _{{x_2}}} = 0.03$; (b) ${\beta _{{x_1}}} = - 0.03, \; {\beta _{{x_2}}} = $ –0.03

    图 9  不同长度变化率下热整流系数随长度比

    Fig. 9.  Variations of thermal rectification coefficient with length ratio at different length variation ratio.

    图 8  不同边界温差下热整流系数随长度比的变化 (a) ${\beta _{{x_1}}} = $$ - 0.03, \; {\beta _{{x_2}}} = 0.03$; (b) ${\beta _{{x_1}}} = - 0.03, \; {\beta _{{x_2}}} = - 0.03$

    Fig. 8.  Variations of thermal rectification coefficient with length ratio at different boundary temperature differences: (a) ${\beta _{{x_1}}} \!=\! - 0.03, \; {\beta _{{x_2}}} \!=\! 0.03$; (b) ${\beta _{{x_1}}} \!=\! - 0.03,\; {\beta _{{x_2}}} \!=\! - 0.03$

  • [1]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [2]

    Zhu J, Hippalgaonkar K, Shen S, Wang K V, Abate Y, Lee S, Wu J Q, Yin X B, Majumdar A, Zhang X 2014 Nano. Lett. 14 4867Google Scholar

    [3]

    Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar

    [4]

    Li N B, Ren J, Wang L, Zhang G, Hänggi P, Li B W 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [5]

    单小东, 王沫然 2014 工程热物理学报 35 1401Google Scholar

    Shan X D, Wang M R 2014 J. Eng. Thermophys. 35 1401Google Scholar

    [6]

    张茂平, 钟伟荣, 艾保全 2011 物理学报 60 060511Google Scholar

    Zhang M P, Zhong W R, Ai B Q 2011 Acta Phys. Sin. 60 060511Google Scholar

    [7]

    温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 物理学报 64 216501Google Scholar

    Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar

    [8]

    Nobakht A Y, Gandomi Y A, Wang J Q, Bowman M H, Marable D C, Garrison B E, Kim D, Shin S 2018 Carbon. 132 565Google Scholar

    [9]

    Machrafi H, Lebon G, Jou D 2016 Int. J. Heat Mass Transfer. 97 603Google Scholar

    [10]

    鞠生宏, 梁新刚 2013 物理学报 62 026101Google Scholar

    Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar

    [11]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [12]

    李威, 冯妍卉, 陈阳, 张欣欣 2012 物理学报 61 136102Google Scholar

    Li W, Feng Y H, Chen Y, Zhang X X 2012 Acta Phys. Sin. 61 136102Google Scholar

    [13]

    Meng Z, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transfer. 147 118915Google Scholar

    [14]

    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [15]

    Aiyiti A, Zhang Z, Chen B, Hu S, Chen J, Xu X, Li B 2018 Carbon 140 673Google Scholar

    [16]

    Peyrard M 2006 Europhys. Lett. 76 49Google Scholar

    [17]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar

    [18]

    Shih T M, Gao Z J, Guo Z Q, Merlitz H, Pagni P J, Chen Z 2015 Sci. Rep. 5 12677Google Scholar

    [19]

    Sadat H, Le Dez V 2016 Mech. Res. Commun. 76 48Google Scholar

    [20]

    Go D B, Sen M 2010 J. Heat Transfer 132 124502Google Scholar

    [21]

    Majdi T, Pal S, Puri I K 2017 Int. J. Therm. Sci. 117 260Google Scholar

    [22]

    Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar

    [23]

    Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G, Liu L T 2012 Sci. Rep. 2 523Google Scholar

    [24]

    Dames C 2009 J. Heat Transfer 131 061301Google Scholar

    [25]

    Yang Y, Chen H, Wang H, Li N B, Zhang L F 2018 Phys. Rev. E 98 042131Google Scholar

    [26]

    Sayer R A 2013 Proceedings of the ASME International Mechanical Engineering Congress and Exposition-2012, Albuquerque, November 9–15, 2012 p86065

    [27]

    Chumak K, Martynyak R 2012 Int. J. Heat Mass Transfer 55 5603Google Scholar

    [28]

    朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar

    Zhu Y X, Wang J, Luo S, Wang J, Xia G D 2016 Sci. China, Ser. 46 175Google Scholar

    [29]

    汤宇轩, 李凡, 王淼, 王中元, 王军, 夏国栋 2018 中国科技论文 13 1244Google Scholar

    Tang Y X, Li F, Wang M, Wang Z Y, Wang J, Xia G D 2018 China Science Paper 13 1244Google Scholar

    [30]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [31]

    Reddy J N 1993 An Introduction to The Finite Element Method (2nd Ed.) (New York: McGraw-Hill) pp105–117

    [32]

    Cengel Y A 2007 Heat and Mass Transfer: A Practical Approach (3rd Ed.) (Boston: McGraw-Hill) pp844–846

  • [1] 黄礼胜, 罗荣祥. 二维气体模型中的负微分热阻. 物理学报, 2023, 72(1): 010501. doi: 10.7498/aps.72.20221498
    [2] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应. 物理学报, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [3] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [4] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [5] 刘康, 孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析. 物理学报, 2020, 69(2): 028501. doi: 10.7498/aps.69.20190921
    [6] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [7] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [8] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [9] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 杨育奇, 高庆庆, 李冠男. 组合结构化合物Ho2Ni7-xFex (x=03.0)的晶体结构、结构转变和磁性. 物理学报, 2013, 62(1): 016103. doi: 10.7498/aps.62.016103
    [12] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [14] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究. 物理学报, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [15] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应. 物理学报, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [16] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象. 物理学报, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [17] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [18] 李晓春, 梁宏宇, 易秀英, 肖清武, 赵保星. 二维组合宽带隙材料的研究. 物理学报, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [19] 李玉现, 刘建军, 李伯臧. 量子点接触中的电导与热功率:磁场与温度的影响. 物理学报, 2005, 54(3): 1366-1369. doi: 10.7498/aps.54.1366
    [20] 许振嘉, 孙伯康, 王万年, 江德生, 宋春英. 硅中热施主的电子结构. 物理学报, 1982, 31(10): 1362-1368. doi: 10.7498/aps.31.1362
计量
  • 文章访问数:  8497
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-12-14
  • 刊出日期:  2020-03-05

/

返回文章
返回