搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界压力CO2在水平圆管内流动传热数值分析

闫晨帅 徐进良

引用本文:
Citation:

超临界压力CO2在水平圆管内流动传热数值分析

闫晨帅, 徐进良

Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube

Yan Chen-Shuai, Xu Jin-Liang
PDF
HTML
导出引用
  • 采用SST k-ω低雷诺数湍流模型对加热条件下超临界压力CO2在内径di = 22.14 mm, 加热长度Lh = 2440 mm水平圆管内三维稳态流动与传热特性进行了数值计算. 通过超临界CO2在水平圆管内的流动传热实验数据验证了数值模型的可靠性和准确性. 首先, 研究了超临界压力CO2在水平圆管内的流动传热特点, 基于超临界CO2在类临界温度Tpc处发生类液-类气“相变”的假设, 揭示了水平圆管顶母线和底母线区域不同的流动传热行为. 然后, 分析了热流密度qw和质量流速G对水平圆管内超临界压力CO2流动换热的影响, 通过获取流体域内的物性分布、速度分布和湍流分布等详细信息, 重点解释了不同热流密度qw和质量流速G下顶母线内壁温度Tw,i分布产生差异的传热机理, 分析结果确定了类气膜厚度δ、类气膜性质、轴向速度u和湍动能k是影响顶母线壁温分布差异的主要因素. 研究结果可以为超临界压力CO2换热装置的优化设计和安全运行提供理论指导.
    In the present study, the three-dimensional steady-state numerical simulation has been performed by using ANSYS Fluent15.0 with SST k-ω low Reynolds turbulence model to study flow and heat transfer characteristics for supercritical CO2 in the horizontal straight tube with inner diameter di = 22.14 mm and heating length Lh = 2440 mm under heating condition. The reliability and accuracy of the numerical model was verified by the experimental data of flow and heat transfer of supercritical CO2 in horizontal tube. Firstly, flow and heat transfer characteristics of supercritical CO2 was studied in horizontal tube. Based on the assumption that the supercritical CO2 will undergoes “phase transition” between liquid-like and vapor-like at pseudocritical temperature Tpc, the differences between top generatrix and bottom generatrix of horizontal tube at flow and heat transfer behaviors were revealed. The results show flow and heat transfer characteristics of supercritical CO2 in horizontal tube are similar to those under subcritical pressure. Then, the influences of heat flux qw and mass flux G on flow and heat transfer of supercritical CO2 were analyzed. The higher heat flux qw is or the smaller mass flux G is, the higher inner wall temperature Tw,i at top generatrix is. The reasons for difference in the distribution of inner wall temperature Tw,i at top generatrix under different heat flux qw and mass flux G were explained by capturing detailed information about thermophysical properties distribution including specific heat at constant pressure cp and thermal conductivity λ, axial velocity distribution and turbulent kinetic energy distribution in the fluid domain. It is observed that vapor-like film thickness δ, vapor-like film property characterized by specific heat at constant pressure cp and thermal conductivity λ, axial velocity u and turbulent kinetic energy k are the main factors affecting the difference in inner wall temperature distribution at top generatrix. The present work can provide a theoretical guidance for design and safe operation of heat exchanger for supercritical CO2 Brayton cycle.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家级-国家重点研发计划(2017YFB0601801)
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    [1]

    Dostal V 2004 Ph.D. Dissertation (Massachusetts: Massachusetts Institute of Technology

    [2]

    Al-Sulaiman F A, Atif M 2015 Energy 82 61Google Scholar

    [3]

    Li M J, Zhu H H, Guo J Q, Wang K, Tao W Q 2017 Appl. Therm. Eng. 126 255Google Scholar

    [4]

    Xu J L, Sun E H, Li M J, Liu H, Zhu B G 2018 Energy 157 227Google Scholar

    [5]

    Kim H Y, Kim H R, Kang D J, Song J H, Bae Y Y 2008 Nucl. Eng. Technol. 40 155Google Scholar

    [6]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [7]

    Li Z H, Jiang P X, Zhao C R, Zhang Y 2010 Exp. Therm. Fluid Sci. 34 1162Google Scholar

    [8]

    Kim D E, Kim M H 2011 Int. J. Heat Fluid Flow 32 176Google Scholar

    [9]

    Jiang P X, Zhang Y, Xu Y J, Shi R F 2008 Int. J. Therm. Sci. 47 998Google Scholar

    [10]

    Liu S H, Huang Y P, Wang J F, Leung L K H 2018 Int. J. Heat Mass Transfer 117 595Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Adebiyi G A, Hall W B 1976 Int. J. Heat Mass Transfer 19 715Google Scholar

    [13]

    Pidaparti S R, McFarland J A, Mikhaeil M M, Anderson M H, Ranjan D 2015 Nucl. Eng. Radiat. Sci. 1 031001Google Scholar

    [14]

    Chu X, Laurien E 2016 J. Supercrit. Fluids 116 172Google Scholar

    [15]

    Wang J H, Guo P C, Yan J G, Zhu F L, Luo X Q 2019 Adv. Mech. Eng. 11 1687814019830804

    [16]

    Tanimizu K, Sadr R 2016 Heat Mass Transfer 52 713Google Scholar

    [17]

    Kim T H, Kwon J G, Kim M H, Park H S 2018 Exp. Therm. Fluid Sci. 92 222Google Scholar

    [18]

    Wang K Z, Xu X X, Wu Y Y, Liu C, Dang C B 2015 J. Supercrit. Fluids 99 112Google Scholar

    [19]

    Menter F R 1994 AIAA J. 32 1598Google Scholar

    [20]

    Holman J P, Rea S N, Howard C E 1965 Int. J. Heat Mass Transfer 8 1095Google Scholar

    [21]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [22]

    韩布兴 2010 超临界流体科学与技术(北京: 中国石化出版社) 第4页

    Han B X 2010 Supercritical Fluid Science and Technology (Beijing: China Petrochemical Press) p4 (in Chinese)

    [23]

    Yang Z, Peng X F, Ye P 2008 Int. J. Heat Mass Transfer 51 1003Google Scholar

    [24]

    Da R E, Del C D 2012 J. Heat Transfer 134 051019Google Scholar

    [25]

    徐济鋆 2001 沸腾传热和气液两相流(北京: 原子能出版社) 第16—19页

    Xu J J 2001 Boiling Heat Transfer and Gas-liquid Two-phase Flow (Beijing: Atomic Energy Press) pp16−19 (in Chinese)

    [26]

    Yang C Y, Xu J L, Wang X D, Zhang W 2013 Int. J. Heat Mass Transfer 64 212Google Scholar

    [27]

    Wang X C, Xiang M J, Huo H J, Liu Q 2018 Appl. Therm. Eng. 141 775Google Scholar

    [28]

    闫晨帅, 朱兵国, 尹少军, 孙恩慧, 徐进良, 刘欢 2019 中国科学: 技术科学Google Scholar

    Yan C S, Z hu, B G, Yin S J, Sun E H, Xu J L, Liu H 2019 Sci. Sin. Tech.Google Scholar

  • 图 1  几何模型示意图

    Fig. 1.  Schematic diagram of the geometric model.

    图 2  网格无关性验证

    Fig. 2.  Verification for grid independence.

    图 3  不同压力下, S-CO2热物性曲线 (a) 定压比热cp; (b) 密度ρ; (c) 导热系数λ; (d) 黏度μ

    Fig. 3.  Thermophysical properties of S-CO2 under different pressures: (a) Specific heat at constant pressure cp; (b) density ρ; (c) thermal conductivity λ; (d) viscosity μ.

    图 4  数值预测壁温与Adebiyi和Hall[12]实验数据比较

    Fig. 4.  Comparison of wall temperature predicted by simulation against experimental data by Adebiyi and Hall[12].

    图 5  水平圆管内S-CO2传热特性典型曲线 (a) 顶母线与底母线内壁温Tw,i和传热系数h轴向分布; (b) 类气膜厚度δ周向分布

    Fig. 5.  Typical curves of heat transfer characteristics for S-CO2 in horizontal tube: (a) Axial distribution of inner wall temperature and heat transfer coefficient at top generatrix and bottom generatrix; (b) circumferential distribution of vapor-like film thickness.

    图 6  特征横截面内矢量速度分布

    Fig. 6.  Vector velocity distribution in the characteristic cross-sections.

    图 7  特征横截面内温度分布

    Fig. 7.  Temperature distribution in the characteristic cross-sections.

    图 8  水平圆管内S-CO2轴向速度沿径向分布

    Fig. 8.  Radial distribution of axial velocity for S-CO2 in horizontal tube.

    图 9  热流密度qw对壁温和二次流强度的影响

    Fig. 9.  Influences of heat flux on wall temperature and second flow intensity.

    图 10  不同热流密度时, 水平圆管特征截面内热物性、轴向速度和湍动能沿径向分布曲线 (a) 定压比热cp; (b) 导热系数λ; (c) 轴向速度u; (d) 湍动能k

    Fig. 10.  Radial distribution curves of thermophyical properties in the characteristic cross-sections under different heat flux: (a) Specific heat at constant pressure cp; (b) thermal conductivity λ; (c) axial velocity u; (d) turbulent kinetic energy k.

    图 11  质量流速G对壁温和二次流强度的影响

    Fig. 11.  Effects of mass flux on wall temperature and second flow intensity.

    图 12  不同质量流速下, 水平圆管特征截面内热物性、轴向速度和湍动能沿径向分布曲线 (a) 定压比热cp; (b) 导热系数λ; (c) 轴向速度u; (d) 湍动能k

    Fig. 12.  Radial distribution curves of thermophyical properties in the characteristic cross-sections under different mass flux: (a) Specific heat at constant pressure cp; (b) thermal conductivity λ; (c) axial velocity u; (d) turbulent kinetic energy k.

  • [1]

    Dostal V 2004 Ph.D. Dissertation (Massachusetts: Massachusetts Institute of Technology

    [2]

    Al-Sulaiman F A, Atif M 2015 Energy 82 61Google Scholar

    [3]

    Li M J, Zhu H H, Guo J Q, Wang K, Tao W Q 2017 Appl. Therm. Eng. 126 255Google Scholar

    [4]

    Xu J L, Sun E H, Li M J, Liu H, Zhu B G 2018 Energy 157 227Google Scholar

    [5]

    Kim H Y, Kim H R, Kang D J, Song J H, Bae Y Y 2008 Nucl. Eng. Technol. 40 155Google Scholar

    [6]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [7]

    Li Z H, Jiang P X, Zhao C R, Zhang Y 2010 Exp. Therm. Fluid Sci. 34 1162Google Scholar

    [8]

    Kim D E, Kim M H 2011 Int. J. Heat Fluid Flow 32 176Google Scholar

    [9]

    Jiang P X, Zhang Y, Xu Y J, Shi R F 2008 Int. J. Therm. Sci. 47 998Google Scholar

    [10]

    Liu S H, Huang Y P, Wang J F, Leung L K H 2018 Int. J. Heat Mass Transfer 117 595Google Scholar

    [11]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 Int. J. Therm. Sci. 136 254Google Scholar

    [12]

    Adebiyi G A, Hall W B 1976 Int. J. Heat Mass Transfer 19 715Google Scholar

    [13]

    Pidaparti S R, McFarland J A, Mikhaeil M M, Anderson M H, Ranjan D 2015 Nucl. Eng. Radiat. Sci. 1 031001Google Scholar

    [14]

    Chu X, Laurien E 2016 J. Supercrit. Fluids 116 172Google Scholar

    [15]

    Wang J H, Guo P C, Yan J G, Zhu F L, Luo X Q 2019 Adv. Mech. Eng. 11 1687814019830804

    [16]

    Tanimizu K, Sadr R 2016 Heat Mass Transfer 52 713Google Scholar

    [17]

    Kim T H, Kwon J G, Kim M H, Park H S 2018 Exp. Therm. Fluid Sci. 92 222Google Scholar

    [18]

    Wang K Z, Xu X X, Wu Y Y, Liu C, Dang C B 2015 J. Supercrit. Fluids 99 112Google Scholar

    [19]

    Menter F R 1994 AIAA J. 32 1598Google Scholar

    [20]

    Holman J P, Rea S N, Howard C E 1965 Int. J. Heat Mass Transfer 8 1095Google Scholar

    [21]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [22]

    韩布兴 2010 超临界流体科学与技术(北京: 中国石化出版社) 第4页

    Han B X 2010 Supercritical Fluid Science and Technology (Beijing: China Petrochemical Press) p4 (in Chinese)

    [23]

    Yang Z, Peng X F, Ye P 2008 Int. J. Heat Mass Transfer 51 1003Google Scholar

    [24]

    Da R E, Del C D 2012 J. Heat Transfer 134 051019Google Scholar

    [25]

    徐济鋆 2001 沸腾传热和气液两相流(北京: 原子能出版社) 第16—19页

    Xu J J 2001 Boiling Heat Transfer and Gas-liquid Two-phase Flow (Beijing: Atomic Energy Press) pp16−19 (in Chinese)

    [26]

    Yang C Y, Xu J L, Wang X D, Zhang W 2013 Int. J. Heat Mass Transfer 64 212Google Scholar

    [27]

    Wang X C, Xiang M J, Huo H J, Liu Q 2018 Appl. Therm. Eng. 141 775Google Scholar

    [28]

    闫晨帅, 朱兵国, 尹少军, 孙恩慧, 徐进良, 刘欢 2019 中国科学: 技术科学Google Scholar

    Yan C S, Z hu, B G, Yin S J, Sun E H, Xu J L, Liu H 2019 Sci. Sin. Tech.Google Scholar

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型. 物理学报, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [3] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [4] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [5] 张海松, 徐进良, 朱鑫杰. 基于拟沸腾理论的超临界CO2管内传热恶化量纲分析. 物理学报, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [6] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [7] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟. 物理学报, 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [8] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [9] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析. 物理学报, 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [10] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [11] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [12] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析. 物理学报, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [13] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [14] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [15] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [17] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟. 物理学报, 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [18] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [19] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟. 物理学报, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [20] 杨 静, 郄秀书, 王建国, 赵 阳, 张其林, 袁 铁, 周筠珺, 冯桂力. 雷电在水平导体中产生感应电压的观测及数值模拟研究. 物理学报, 2008, 57(3): 1968-1975. doi: 10.7498/aps.57.1968
计量
  • 文章访问数:  10367
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-10-31
  • 刊出日期:  2020-02-20

/

返回文章
返回