搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应

Algethami Obaidallah A 李歌天 柳祝红 马星桥

引用本文:
Citation:

Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应

Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥

Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8

Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao
PDF
HTML
导出引用
  • 研究了Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品的相变、磁性和交换偏置效应. 结果表明, 该系列合金在室温下都具有非调制的四方马氏体结构. 马氏体逆相变温度随Cr含量增加而逐渐降低. 20 kOe磁场下的M-T曲线表明, 该系列合金的磁性比较弱. 两相之间的磁性差最大为∆M = 7.61 emu/g. 磁性的变化主要与Mn-Mn间距的变化以及Ni(A位)-Mn(D位)间杂化作用的强弱有关. 在低温下, 马氏体相的磁性随着Cr含量增加而增强. 在500 Oe的外加磁场作用下, 从室温冷却到5 K, 在Mn50Ni42Sn8合金中观察到高达2624 Oe的交换偏置场. 随着Cr含量的增加, 交换偏置场逐渐减小. 当Cr含量x = 0.8时, 随着冷却场的增加, 5 K时的交换偏置场先迅速增加然后逐渐减小. 当冷却场为500 Oe时, 交换偏置场最大. 这主要归因于自旋玻璃态与反铁磁性区域的界面交换耦合作用的变化.
    In this paper, phase transformations, magnetic properties and exchange bias of Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples are investigated. It is found that each of all the alloys has a tetragonal martensite structure at room temperature. The transformation temperature decreases with the increase of Cr content. The maximum magnetization difference between martensite and austenite phase is ∆M = 7.61 emu/g. The change of magnetic properties is mainly related to the change of Mn-Mn distance and the hybridization strength between Ni(A)-Mn(D). The ferromagnetism of martensite can be enhanced by Cr doping. The exchange bias field is observed to reach up to as high as 2624 Oe in Mn50Ni42Sn8 alloy after cooling from room temperature to 5 K in 500 Oe magnetic field, which decreases gradually with the increase of Cr content. Furthermore, the exchange bias field increases first and then followed by a decrease with the increase of the cooling field in Mn49.2Cr0.8Ni42Sn8. This is mainly attributed to the change of the interface exchange coupling between the spin glass state and antiferromagnetic region.
      通信作者: 柳祝红, zhliu@ustb.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51671024)
      Corresponding author: Liu Zhu-Hong, zhliu@ustb.edu.cn
    [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404

    [3]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [4]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar

    [5]

    Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar

    [6]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [7]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [8]

    Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar

    [9]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906

    [11]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [12]

    Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar

    [13]

    Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar

    [14]

    Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar

    [15]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar

    [16]

    Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar

    [17]

    Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar

    [18]

    Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar

    [19]

    Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar

    [20]

    Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar

    [21]

    Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar

    [22]

    Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar

    [23]

    Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002

    [24]

    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar

    [25]

    葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640

    Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640

    [26]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar

    [27]

    申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar

    Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar

    [28]

    Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar

    [29]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [30]

    Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237

    [31]

    Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar

    [32]

    Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar

    [33]

    Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar

  • 图 1  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品在室温下的XRD图谱

    Fig. 1.  XRD patterns for Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples measured at room temperature.

    图 2  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品在100 Oe下的升温热磁曲线, 插图为阴影部分的局部放大图

    Fig. 2.  Temperature dependence of magnetization upon field heating procedures in the field of 100 Oe for Mn50–xCrxNi42Sn8(x = 0, 0.4, 0.6, 0.8) polycrystalline samples, and inset shows magnification of the shadow part.

    图 3  (a) Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8)多晶样品的马氏体逆相变温度TM及马氏体相的居里温度$ T_{\rm C}^{\rm M} $与Cr含量的关系, 以及(b) TM与价电子浓度、(c)晶胞体积 和(d) Ni-Mn原子间距的关系

    Fig. 3.  (a) Cr content dependence of Curie temperature of martensite phase $ T_{\rm C}^{\rm M} $ and martensitic transformation temperature TM, (b) TM as a function of valence electron concentration, (c) cell volume, and (d) the distance between Ni and Mn at D site for Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8).

    图 4  Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8)多晶样品在20 kOe下的升温热磁曲线

    Fig. 4.  Temperature dependence of magnetization upon heating procedures in field of 20 kOe for Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8).

    图 5  Mn50Ni42Sn8奥氏体与马氏体原子的占位示意图

    Fig. 5.  The sketched unit cells of the austenite and martensite structures.

    图 6  (a) Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8)多晶样品在500 Oe磁场中冷却至5 K下的磁滞回线及局部放大图; (b) HCHEB与Cr含量的关系

    Fig. 6.  (a) Magnetization hysteresis loops for Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8) polycrystalline samples measured at 5 K after 500 Oe field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB as a function of Cr content.

    图 7  (a) Mn49.2Cr0.8Ni42Sn8多晶样品在不同场冷至5 K下的磁滞回线及局部放大图; (b) HCHEB与不同场冷之间的关系

    Fig. 7.  (a) Magnetization hysteresis loops for Mn49.2Cr0.8Ni42Sn8 polycrystalline sample measured at 5 K after different field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB under different cooling field.

    表 1  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) 多晶样品在室温下的晶格参数、晶轴比c/a与晶胞体积

    Table 1.  Lattice parameters, c/a, and cell volume of Mn50–x CrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples at room temperature.

    xa = bcc/a晶胞体积/Å3
    05.48816.96811.269209.87
    0.45.49666.96011.266210.30
    0.65.51366.94631.259210.70
    0.85.52216.93421.255211.50
    下载: 导出CSV

    表 2  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品中Mn(D)-Ni(A), Mn(B)-Mn(A)和Mn(B)-Mn(D)的原子间距

    Table 2.  The atomic distance of Mn(D)-Ni(A), Mn(B)-Mn(A), and Mn(B)-Mn(D) in Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples.

    Cr含量xMnD-NiA
    ($ \sqrt 3 $a/4)
    MnB-MnA
    ($ \sqrt 3 $a/4)
    MnB-MnD
    (a/2)
    02.3762.3762.744
    0.42.382.382.748
    0.62.3872.3872.757
    0.82.3912.3912.761
    下载: 导出CSV
  • [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404

    [3]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [4]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar

    [5]

    Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar

    [6]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [7]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [8]

    Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar

    [9]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906

    [11]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [12]

    Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar

    [13]

    Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar

    [14]

    Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar

    [15]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar

    [16]

    Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar

    [17]

    Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar

    [18]

    Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar

    [19]

    Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar

    [20]

    Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar

    [21]

    Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar

    [22]

    Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar

    [23]

    Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002

    [24]

    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar

    [25]

    葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640

    Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640

    [26]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar

    [27]

    申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar

    Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar

    [28]

    Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar

    [29]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [30]

    Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237

    [31]

    Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar

    [32]

    Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar

    [33]

    Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar

  • [1] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究. 物理学报, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录. Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响. 物理学报, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [4] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究. 物理学报, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [5] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [6] 张玉洁, 刘恩克, 张红国, 李贵江, 陈京兰, 王文洪, 吴光恒. 替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性. 物理学报, 2013, 62(19): 197501. doi: 10.7498/aps.62.197501
    [7] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置. 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [8] 宋瑞宁, 朱伟, 刘恩克, 李贵江, 陈京兰, 王文洪, 李祥, 吴光恒. 内应力对Mn2NiGa铁磁形状记忆合金的结构、相变和磁性能的影响. 物理学报, 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [9] 罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范. Heusler合金Mn2NiGe马氏体相变的带Jahn-Teller效应研究. 物理学报, 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [10] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [11] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [12] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [13] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [14] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响. 物理学报, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [15] 敬 超, 李 哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓. 哈斯勒合金Ni-Mn-Sn的马氏体相变与反磁热性质. 物理学报, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [16] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] 代学芳, 刘何燕, 闫丽琴, 曲静萍, 李养贤, 陈京兰, 吴光恒. CoNiZ系列合金的结构和马氏体相变性质. 物理学报, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [18] 高淑侠, 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.2Mn23.8Ga24的马氏体相变及其物理表征. 物理学报, 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [19] 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究. 物理学报, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [20] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应. 物理学报, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
计量
  • 文章访问数:  7357
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-12
  • 修回日期:  2020-01-02
  • 刊出日期:  2020-03-05

/

返回文章
返回