-
研究了Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品的相变、磁性和交换偏置效应. 结果表明, 该系列合金在室温下都具有非调制的四方马氏体结构. 马氏体逆相变温度随Cr含量增加而逐渐降低. 20 kOe磁场下的M-T曲线表明, 该系列合金的磁性比较弱. 两相之间的磁性差最大为∆M = 7.61 emu/g. 磁性的变化主要与Mn-Mn间距的变化以及Ni(A位)-Mn(D位)间杂化作用的强弱有关. 在低温下, 马氏体相的磁性随着Cr含量增加而增强. 在500 Oe的外加磁场作用下, 从室温冷却到5 K, 在Mn50Ni42Sn8合金中观察到高达2624 Oe的交换偏置场. 随着Cr含量的增加, 交换偏置场逐渐减小. 当Cr含量x = 0.8时, 随着冷却场的增加, 5 K时的交换偏置场先迅速增加然后逐渐减小. 当冷却场为500 Oe时, 交换偏置场最大. 这主要归因于自旋玻璃态与反铁磁性区域的界面交换耦合作用的变化.In this paper, phase transformations, magnetic properties and exchange bias of Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples are investigated. It is found that each of all the alloys has a tetragonal martensite structure at room temperature. The transformation temperature decreases with the increase of Cr content. The maximum magnetization difference between martensite and austenite phase is ∆M = 7.61 emu/g. The change of magnetic properties is mainly related to the change of Mn-Mn distance and the hybridization strength between Ni(A)-Mn(D). The ferromagnetism of martensite can be enhanced by Cr doping. The exchange bias field is observed to reach up to as high as 2624 Oe in Mn50Ni42Sn8 alloy after cooling from room temperature to 5 K in 500 Oe magnetic field, which decreases gradually with the increase of Cr content. Furthermore, the exchange bias field increases first and then followed by a decrease with the increase of the cooling field in Mn49.2Cr0.8Ni42Sn8. This is mainly attributed to the change of the interface exchange coupling between the spin glass state and antiferromagnetic region.
-
Keywords:
- martensitic transformation /
- exchange bias effect /
- Heusler alloys
[1] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar
[2] Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404
[3] Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar
[4] Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar
[5] Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar
[6] Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar
[7] Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar
[8] Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar
[9] Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar
[10] Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906
[11] Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar
[12] Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar
[13] Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar
[14] Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar
[15] Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar
[16] Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar
[17] Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar
[18] Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar
[19] Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar
[20] Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar
[21] Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar
[22] Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar
[23] Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002
[24] Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar
[25] 葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640
Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640
[26] Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar
[27] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar
Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar
[28] Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar
[29] Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar
[30] Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237
[31] Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar
[32] Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar
[33] Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar
-
图 3 (a) Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8)多晶样品的马氏体逆相变温度TM及马氏体相的居里温度
$ T_{\rm C}^{\rm M} $ 与Cr含量的关系, 以及(b) TM与价电子浓度、(c)晶胞体积 和(d) Ni-Mn原子间距的关系Fig. 3. (a) Cr content dependence of Curie temperature of martensite phase
$ T_{\rm C}^{\rm M} $ and martensitic transformation temperature TM, (b) TM as a function of valence electron concentration, (c) cell volume, and (d) the distance between Ni and Mn at D site for Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8).图 6 (a) Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8)多晶样品在500 Oe磁场中冷却至5 K下的磁滞回线及局部放大图; (b) HC和HEB与Cr含量的关系
Fig. 6. (a) Magnetization hysteresis loops for Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8) polycrystalline samples measured at 5 K after 500 Oe field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB as a function of Cr content.
图 7 (a) Mn49.2Cr0.8Ni42Sn8多晶样品在不同场冷至5 K下的磁滞回线及局部放大图; (b) HC和HEB与不同场冷之间的关系
Fig. 7. (a) Magnetization hysteresis loops for Mn49.2Cr0.8Ni42Sn8 polycrystalline sample measured at 5 K after different field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB under different cooling field.
表 1 Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) 多晶样品在室温下的晶格参数、晶轴比c/a与晶胞体积
Table 1. Lattice parameters, c/a, and cell volume of Mn50–x CrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples at room temperature.
x a = b/Å c/Å c/a 晶胞体积/Å3 0 5.4881 6.9681 1.269 209.87 0.4 5.4966 6.9601 1.266 210.30 0.6 5.5136 6.9463 1.259 210.70 0.8 5.5221 6.9342 1.255 211.50 表 2 Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品中Mn(D)-Ni(A), Mn(B)-Mn(A)和Mn(B)-Mn(D)的原子间距
Table 2. The atomic distance of Mn(D)-Ni(A), Mn(B)-Mn(A), and Mn(B)-Mn(D) in Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples.
Cr含量x MnD-NiA/Å
($ \sqrt 3 $a/4)MnB-MnA/Å
($ \sqrt 3 $a/4)MnB-MnD/Å
(a/2)0 2.376 2.376 2.744 0.4 2.38 2.38 2.748 0.6 2.387 2.387 2.757 0.8 2.391 2.391 2.761 -
[1] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar
[2] Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404
[3] Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar
[4] Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar
[5] Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar
[6] Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar
[7] Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar
[8] Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar
[9] Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar
[10] Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906
[11] Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar
[12] Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar
[13] Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar
[14] Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar
[15] Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar
[16] Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar
[17] Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar
[18] Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar
[19] Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar
[20] Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar
[21] Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar
[22] Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar
[23] Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002
[24] Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar
[25] 葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640
Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640
[26] Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar
[27] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar
Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar
[28] Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar
[29] Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar
[30] Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237
[31] Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar
[32] Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar
[33] Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar
计量
- 文章访问数: 7578
- PDF下载量: 83
- 被引次数: 0