搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低损耗的对称双楔形太赫兹混合表面等离子体波导

王芳 张龙 马涛 王旭 刘玉芳 马春旺

引用本文:
Citation:

一种低损耗的对称双楔形太赫兹混合表面等离子体波导

王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺

A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss

Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang
PDF
HTML
导出引用
  • 本文研究了一种适用于太赫兹频段的对称双楔形混合等离子体波导. 采用有限元法对其混合模式特征进行数值模拟, 阐述了波导的传播长度、归一化有效模场面积和品质因子等特性随波导几何参数的变化规律. 结果表明, 对称双楔形混合等离子体波导在太赫兹频段可获得良好的模场约束能力和低损耗特性, 在有效模场面积达到λ2/10280时, 传播长度达到51 × 103 μm. 波导参数最优时的平行对称楔形波导在忽略波导间串扰时, 波导间距小于16 μm时的耦合长度约为8958 μm. 通过对比发现, 相比于先前的对称微楔形波导结构和对称蝴蝶结波导结构, 对称双楔形混合等离子体波导在传输特性和耦合特性方面都具有更大的优势, 将在光学力捕获、生物分子传输以及高密度集成电路设计等方面具有潜在的应用前景.
    A symmetrical wedge-to-wedge THz hybrid SPPs waveguide (WWTHSW) with low propagation loss is investigated. The WWTHSW consists of two identical dielectric wedge waveguides symmetrically placed on each side of a micro wedge-patterned thin metal film. The mode characteristics of the WWTHSW, such as the propagation length (Lp), the normalized effective mode area (A) and the figure of merit (FOM) are analyzed by using the finite element method (FEM). Firstly, the influences of the height of Si micro wedge waveguide (H) and the gap between two wedges (g) on Lp and A are studied. For the same g, A first decreases and then increases with the increase of H. A achieves a minimum at an H of ~40 μm. However, Lp monotonically increases as H increases. The change of Lp slows down when H is greater than 40 μm. At a fixed H, Lp slightly increases with the increase of g. But A achieves a minimum when g is ~50 nm. Secondly, the dependencies of the mode characteristics of the WWTHSW on Si wedge tip angle (α) and Ag wedge tip angle (θ) are analyzed. At a fixed α, θ has less effect on Lp and A. As α increases at a fixed θ, Lp increases monotonically but A decreases firstly and then increases. A reaches a minimum when α increases to ~100°. Then, the change of Lp and A with the thicknesses of Ag film (d) and Ag wedge (h) are demonstrated. At a fixed h, both Lp and A slightly decrease as d increases. For the same d, Lp and A decrease with the increase of h. A for h = 0 μm is distinctly larger than those for h = 2 μm and h = 5 μm. According to the above optimizations, the parameters of the WWTHSW are chosen as d = 100 nm, g = 50 nm, h = 2 μm, θ = 80°, α = 100°, H = 40 μm. Under the optimal parameters, Lp of ~51 mm is obtained when Am reaches ~λ2/10280. Compared with the previous hybrid THz plasmonic waveguide, Lp of the WWTHSW increases by 3 times, and A decreases by an order of magnitude. This result reveals that the WWTHSW enables low-loss propagation and ultra-deep-subwavelength mode confinement at THz frequencies. At last, the coupling property of the parallel WWTHSW is investigated. The coupling length of ~8958 μm is achieved without the crosstalk between two parallel waveguides. By comparison, the WWTHSW has more advantages in terms of transmission and coupling characteristics than the previous micro wedge waveguide structure and bow-tie waveguide structure. In summary, due to the excellent transmission and coupling characteristics, the WWTHSW has great potential in the fields of optical force in trapping, biomolecules transporting, and in high-density integrated circuits design.
      通信作者: 马涛, matao_bupt79@163.com
    • 基金项目: 国家级-国家自然科学基金(61627818)
      Corresponding author: Ma Tao, matao_bupt79@163.com
    [1]

    Andersen J, Solodukhov V 1978 IEEE T. Antenn. Propag. 26 598Google Scholar

    [2]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X J 2008 Nature Photon. 2 496Google Scholar

    [3]

    Li Qing, Pan D, Wei H, Xu H X 2018 Nano Lett. 18 2009Google Scholar

    [4]

    Bozhevolnyi S I, Volkov V S, Devaux, E, Laluet, J Y, Ebbesen, T W 2006 Nature 440 508Google Scholar

    [5]

    Zhu Z H, Garcia-Ortiz C E, Han Z H, Radko I P, Bozhevolnyi S I 2013 Appl. Phys. Lett. 103 061108

    [6]

    Hassan K, Leroy F, Colas-Des-Francs G, Weeber, J C 2014 Opt. Lett. 39 697Google Scholar

    [7]

    Papaioannou S, Giannoulis G, Vyrsokinos K, Leroy F, Zacharatos F, Markey L, Weeber C J, Dereux A, Bozhevolnyi S, Prinzen A, Apostolopoulos D, Avramopoulos H, Pleros N 2015 IEEE Photon. Technol. Lett. 27 963Google Scholar

    [8]

    Hui F, Berini P 2016 J. Lightwave Technol. 34 2631Google Scholar

    [9]

    涂鑫, 陈震旻, 付红岩 2019 物理学报 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

    [10]

    Wang Y L, Li S L, Yan J Y, Li C, Jiang P, Wang L L, Yu L 2019 Nanophotonics 8 1271Google Scholar

    [11]

    Wang Y L, Li C, Duan G Y, Wang L L, Yu L 2019 Adv. Opt. Mater. 7 1801362Google Scholar

    [12]

    Mai W, Wang Y, Zhang Y, Cui L, Yu L 2017 Chin. Phys. Lett. 34 024204Google Scholar

    [13]

    Gosciniak J, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Opt. Express 18 5314Google Scholar

    [14]

    Berini P 2009 Adv. Opt. Photonic 1 484Google Scholar

    [15]

    Ma Y Q, Gerald F, Yuliya S, Wu Q 2014 Opt. Lett. 39 973Google Scholar

    [16]

    Pan M Y, Lin E H, Wang L, Wei P K 2014 Appl. Phys. A. 115 592

    [17]

    Ma Y Q, Farrell G, Semenova Y, Wu Q 2015 J. Lightwave Technol. 33 3827Google Scholar

    [18]

    贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 物理学报 60 057301Google Scholar

    Jia Z X, Du X, Lü T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301Google Scholar

    [19]

    Gong Q, Bian Y 2014 J. Lightwave Technol. 32 4504Google Scholar

    [20]

    Jacek G, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Optics Express 18 5314

    [21]

    彭滟, 施辰君, 朱亦鸣, 庄松林 2019 中国激光 46 0614002Google Scholar

    Peng Y, Shi C J, Zhu Y M, Zhuang S L 2019 Chin. J. Las. 46 0614002Google Scholar

    [22]

    陈华, 汪力 2009 物理学报 58 4605Google Scholar

    Chen H, Wang L 2009 Acta Phys. Sin. 58 4605Google Scholar

    [23]

    Eldlio M, Ma Y Q, Maeda H, Cada M 2017 Infrared Phys. Technol. 80 93Google Scholar

    [24]

    Cao W, Song C Y, Lanier T E, Singh R, O’Hara J F, Dennis W M, Zhao Y P, Zhang W L 2013 Sci. Rep. 3 1766Google Scholar

    [25]

    Fitch M J, Osiander R 2004 J. Hopkins Apl. Technol. D. 25 348

    [26]

    Berini P 2006 Opt. Express 14 13030Google Scholar

    [27]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, García-Vidal F J 2008 Phys. Rev. Lett. 100 023901Google Scholar

    [28]

    Ma Y Q, Farrell G, Semenova Y, Chan H P, Zhang H Z, Wu Q 2013 Plasmonics 8 1259Google Scholar

    [29]

    Georgios V, Shanhui F 2008 Opt. Express 16 2129Google Scholar

  • 图 1  WWTHSW示意图 (a)三维图; (b)截面图

    Fig. 1.  Schematic diagram of the proposed WWTHSW: (a) 3D diagram; (b) cross-section.

    图 2  不同Hg时, WWTHSW的模式分析 (a) MC, (b) Lp, (c) A; 模场分布: (d) [H, g] = [10, 0.05] μm, (e) [H, g] = [40, 0.05] μm, (f) [H, g] = [90, 0.05] μm

    Fig. 2.  Modes analysis of the WWTHSW with different H and g: (a) MC, (b) Lp, and (c) A;and normalized EM energy density distributions: (d) [H, g] = [10, 0.05] μm; (e) [H, g] = [40, 0.05] μm; (f) [H, g] = [90, 0.05] μm.

    图 3  不同αθ时, WWTHSW的模式分析 (a) Lp, (b) A; (c)模场分布随α的变化(θ = 80°); (d)模场分布随θ的变化(α = 100°)

    Fig. 3.  Modes analysis of the WWTHSW with different α and θ, (a) Lp, (b) A; and normalized EM energy density distributions: (c) with different α at a fixed θ of 80°, (d) with different θ at a fixed α of 100°.

    图 4  不同dh时, WWTHSW的模式分析 (a) Lp、(b) A; (c)沿x方向的归一化能量密度

    Fig. 4.  Modes analysis of the WWTHSW with different d and h, (a) Lp, (b) A, and (c) normalized EM energy density.

    图 5  不同波导性能比较 (a) WWTHSW, HTMWSPPs和HTBTSPPs波导的截面图; (b) WWTHSW, HTMWSPPs和HTBTSPPs波导的ALp关系图; (c)品质因数

    Fig. 5.  Performance comparison of the WWTHSW, HTMWSPPs and HTBTSPPs wavguide: (a) cross-section views; (b) the relationship between A and Lp; and (c) FOM with different parameters.

    图 6  波导耦合特性分析 (a)平行波导三维结构示意图; (b)耦合长度随D的变化; (c)最大传输功率随D的变化

    Fig. 6.  Coupling characteristic of waveguides: (a) schematic diagram parallel waveguides; (b) Lc versus the separation between the two waveguides; (c) the maximum transfer power (Pmax) as a function of distance D.

  • [1]

    Andersen J, Solodukhov V 1978 IEEE T. Antenn. Propag. 26 598Google Scholar

    [2]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X J 2008 Nature Photon. 2 496Google Scholar

    [3]

    Li Qing, Pan D, Wei H, Xu H X 2018 Nano Lett. 18 2009Google Scholar

    [4]

    Bozhevolnyi S I, Volkov V S, Devaux, E, Laluet, J Y, Ebbesen, T W 2006 Nature 440 508Google Scholar

    [5]

    Zhu Z H, Garcia-Ortiz C E, Han Z H, Radko I P, Bozhevolnyi S I 2013 Appl. Phys. Lett. 103 061108

    [6]

    Hassan K, Leroy F, Colas-Des-Francs G, Weeber, J C 2014 Opt. Lett. 39 697Google Scholar

    [7]

    Papaioannou S, Giannoulis G, Vyrsokinos K, Leroy F, Zacharatos F, Markey L, Weeber C J, Dereux A, Bozhevolnyi S, Prinzen A, Apostolopoulos D, Avramopoulos H, Pleros N 2015 IEEE Photon. Technol. Lett. 27 963Google Scholar

    [8]

    Hui F, Berini P 2016 J. Lightwave Technol. 34 2631Google Scholar

    [9]

    涂鑫, 陈震旻, 付红岩 2019 物理学报 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

    [10]

    Wang Y L, Li S L, Yan J Y, Li C, Jiang P, Wang L L, Yu L 2019 Nanophotonics 8 1271Google Scholar

    [11]

    Wang Y L, Li C, Duan G Y, Wang L L, Yu L 2019 Adv. Opt. Mater. 7 1801362Google Scholar

    [12]

    Mai W, Wang Y, Zhang Y, Cui L, Yu L 2017 Chin. Phys. Lett. 34 024204Google Scholar

    [13]

    Gosciniak J, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Opt. Express 18 5314Google Scholar

    [14]

    Berini P 2009 Adv. Opt. Photonic 1 484Google Scholar

    [15]

    Ma Y Q, Gerald F, Yuliya S, Wu Q 2014 Opt. Lett. 39 973Google Scholar

    [16]

    Pan M Y, Lin E H, Wang L, Wei P K 2014 Appl. Phys. A. 115 592

    [17]

    Ma Y Q, Farrell G, Semenova Y, Wu Q 2015 J. Lightwave Technol. 33 3827Google Scholar

    [18]

    贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞 2011 物理学报 60 057301Google Scholar

    Jia Z X, Du X, Lü T T, Guo Y N, Xue W R 2011 Acta Phys. Sin. 60 057301Google Scholar

    [19]

    Gong Q, Bian Y 2014 J. Lightwave Technol. 32 4504Google Scholar

    [20]

    Jacek G, Volkov V S, Bozhevolnyi S I, Markey L, Massenot S, Dereux A 2010 Optics Express 18 5314

    [21]

    彭滟, 施辰君, 朱亦鸣, 庄松林 2019 中国激光 46 0614002Google Scholar

    Peng Y, Shi C J, Zhu Y M, Zhuang S L 2019 Chin. J. Las. 46 0614002Google Scholar

    [22]

    陈华, 汪力 2009 物理学报 58 4605Google Scholar

    Chen H, Wang L 2009 Acta Phys. Sin. 58 4605Google Scholar

    [23]

    Eldlio M, Ma Y Q, Maeda H, Cada M 2017 Infrared Phys. Technol. 80 93Google Scholar

    [24]

    Cao W, Song C Y, Lanier T E, Singh R, O’Hara J F, Dennis W M, Zhao Y P, Zhang W L 2013 Sci. Rep. 3 1766Google Scholar

    [25]

    Fitch M J, Osiander R 2004 J. Hopkins Apl. Technol. D. 25 348

    [26]

    Berini P 2006 Opt. Express 14 13030Google Scholar

    [27]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, García-Vidal F J 2008 Phys. Rev. Lett. 100 023901Google Scholar

    [28]

    Ma Y Q, Farrell G, Semenova Y, Chan H P, Zhang H Z, Wu Q 2013 Plasmonics 8 1259Google Scholar

    [29]

    Georgios V, Shanhui F 2008 Opt. Express 16 2129Google Scholar

  • [1] 马赛群, 邓奥林, 吕博赛, 胡成, 史志文. 低维材料极化激元及其耦合特性. 物理学报, 2022, 71(12): 127104. doi: 10.7498/aps.71.20220272
    [2] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [5] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [6] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [9] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [10] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [13] 邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军. Z箍缩驱动器与丝阵负载耦合特性研究. 物理学报, 2011, 60(11): 115204. doi: 10.7498/aps.60.115204
    [14] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [15] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [16] 方春易, 张树仁, 卢俊, 汪剑波, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究. 物理学报, 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [17] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [18] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [19] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  7865
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 修回日期:  2019-12-24
  • 刊出日期:  2020-04-05

/

返回文章
返回