搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驻波声场中单分散细颗粒的相互作用特性

屈广宁 凡凤仙 张斯宏 苏明旭

引用本文:
Citation:

驻波声场中单分散细颗粒的相互作用特性

屈广宁, 凡凤仙, 张斯宏, 苏明旭

Interaction between monodisperse fine particles in a standing wave acoustic field

Qu Guang-Ning, Fan Feng-Xian, Zhang Si-Hong, Su Ming-Xu
PDF
HTML
导出引用
  • 利用外加声场促进悬浮在气相中的细颗粒发生相互作用, 进而引起颗粒的碰撞和凝并, 使得颗粒平均粒径增大、数目浓度降低, 是控制细颗粒排放的重要技术途径. 为探究驻波声场中单分散细颗粒的相互作用, 建立包含曳力、重力、声尾流效应的颗粒相互作用模型, 采用四阶经典龙格-库塔算法和二阶隐式亚当斯插值算法对模型进行求解. 将数值模拟得到的颗粒声波夹带速度和相互作用过程与相应的解析解和实验结果进行对比, 验证模型的准确性. 进而研究颗粒初始条件和直径对相互作用特性的影响. 结果表明, 初始时刻颗粒中心连线越接近声波波动方向、颗粒位置越接近波腹点, 颗粒间的声尾流效应就越强, 颗粒发生碰撞所需要的时间就越短. 研究还发现, 颗粒直径对颗粒相互作用的影响取决于初始时刻颗粒中心连线偏离声波波动方向的程度. 当偏离较小时, 颗粒直径越大, 颗粒发生碰撞所需要的时间越短; 当偏离很大时, 直径较小的颗粒能够发生碰撞, 而直径较大的颗粒则无法发生碰撞.
    The external acoustic field can be used to promote the interactions between fine particles suspended in the gas phase. Due to the particle interaction, collision and agglomeration between fine particles occur, causing the average particle size to increase and the particle number concentration to decrease. This offers an important technical route to controlling the emissions of fine particles. However, the interaction behaviors between the fine particles under the acoustic field are still not well understood, which severely hinders the technology from developing for fine particle emission control by using acoustic agglomeration. In order to reveal the interaction between monodisperse fine particles in a standing wave acoustic field, a particle interaction model with consideration of the drag force, gravity and acoustic wake effect is developed. The particle motion equations in the model are solved by using the classical Runge-Kutta method combined with the second-order implicit Adams interpolation method. The particle velocity due to acoustic entrainment and the interaction process between particles obtained from the numerical simulation are compared with the corresponding analytical solutions and experimental results to validate the accuracy of model prediction. Good agreement is found, which indicates that the model and the numerical method are capable of accurately predicting the interaction between fine particles in the standing wave acoustic field. On this basis, the effects of initial conditions and diameters of particles on the interaction behaviors are explored. The results show that when the initial particle centerline is closer to the acoustic wave direction or the initial particle position is closer to the wave antinode, the acoustic wake effect between the particles becomes stronger, and shorter time is required for particles to collide. It is also found that the influence of particle diameter on particle interaction depends on the initial deviation of particle centerline from the acoustic wave direction. When the deviation is small, the larger the particle diameter, the shorter the time required for particles to collide is. When the deviation is large, the collision between particles with smaller diameters occurs, while the collision between particles with larger diameters may not occur.
      通信作者: 凡凤仙, fanfengxian@usst.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51976130)
      Corresponding author: Fan Feng-Xian, fanfengxian@usst.edu.cn
    [1]

    Lu M S, Fang M X, He M C, Liu S X, Luo Z Y 2019 RSC Adv. 9 5224Google Scholar

    [2]

    Shen G Q, Huang X Y, He C L, Zhang S P, An L S 2018 Powder Technol. 325 145Google Scholar

    [3]

    Fan F X, Zhang M J, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2017 Aerosol Air Qual. Res. 17 1073Google Scholar

    [4]

    Parimanan C, Sattawat C, Pattanaporn L 2018 Powder Technol. 340 243Google Scholar

    [5]

    Herrera C A, Levy E K, Ochs J 2002 AIChE J. 48 503Google Scholar

    [6]

    Francisco J T, Sebastian E, Dirk M, Jurg D, Kai K 2013 Ultrason. Sonochem. 20 655Google Scholar

    [7]

    Kooij S, Astefanei A, Corthals G L, Bonn D 2019 Sci. Rep. 9 6128Google Scholar

    [8]

    An Z S, Huang R J, Zhang R Y, Tie X X, Li G H, Cao J J, Zhou W J, Shi Z G, Han Y M, Gu Z L, Ji Y M 2019 PNAS 116 8657Google Scholar

    [9]

    Jiang X D, Xu H, Wang X 2014 Chin. Phys. B 23 125201Google Scholar

    [10]

    Fan F X, Zhang S H, Wang W Y Yan J P, Su M X 2019 Process Saf. Environ. Prot. 125 197Google Scholar

    [11]

    Fan F X, Zhang S H, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2019 Can. J. Chem. Eng. 97 930Google Scholar

    [12]

    Amiri M, Sadighzadeh A, Falamaki C 2016 Aerosol Air Qual. Res. 16 3012Google Scholar

    [13]

    Qiao Z H, Dong W, Huang Y J, Naso V 2018 J. Environ. Sci. 67 161Google Scholar

    [14]

    Zhang G X, Zhou T T, Zhang L L, Wang J Q, Chi Z H, Hu E 2018 Chem. Eng. J. 334 891Google Scholar

    [15]

    González I, Gallego J A, Riera E 2003 J. Aerosol Sci. 34 1611Google Scholar

    [16]

    Zhang G X, Liu J Z, Wang J, Zhou J H, Cen K F 2012 Chin. Sci. Bull. 57 2404Google Scholar

    [17]

    Fan F X, Yang X F, Kim C N 2013 J. Mech. Sci. Technol. 27 1707Google Scholar

    [18]

    Maknickas A, Markauska D, Kačianauskas R 2016 Part. Sci. Technol. 34 453Google Scholar

    [19]

    Fan F X, Xu X, Zhang S H, Su M X 2019 Aerosol Sci. Technol. 53 1204Google Scholar

    [20]

    Li S Q, Marshall J S, Liu G Q, Yao Q 2011 Prog. Energ. Combust. 37 633Google Scholar

    [21]

    Crowe C T, Schwarzkopf J D, Scommerfeld M, Tsuij Y 2012 Multiphase Flows with Droplets and Particles (2nd Ed.) (New York: CRC Press) pp67−72

    [22]

    González I, Elvira L, Hoffmann T L, Gallego J A 2001 Acta Acust. Acust. 87 454

    [23]

    González I, Hoffmann T L, Gallego J A 2000 Acta Acust. Acust. 86 784

    [24]

    Li S Q, Marshall J S 2007 J. Aerosol Sci. 38 1031Google Scholar

    [25]

    Zhang G X, Zhang L L, Wang J Q, Chi Z H, Hu E 2018 Powder Technol. 323 393Google Scholar

    [26]

    Yan J P, Chen L Q, Yang L J 2016 Chem. Eng. J. 290 319Google Scholar

    [27]

    Zhang G X, Ma Z F, Shen J, Zhang K, Wang J Q, Chi Z H 2020 J. Hazard. Mater. 382 121089Google Scholar

  • 图 1  声场中相互作用颗粒的位置示意图

    Fig. 1.  Schematic of positions of the interacting particles in the acoustic field.

    图 2  颗粒声波夹带速度数值解与解析解的对比 (a) dp = 0.5 μm; (b) dp = 5 μm

    Fig. 2.  Comparison between numerical and analytical solutions of particle velocities due to acoustic entrainment: (a) dp = 0.5 μm; (b) dp = 5 μm.

    图 3  颗粒相互作用过程数值模拟与实验结果的对比(内插图为碰撞前6T内颗粒的运动轨迹) (a) f = 5000 Hz; (b) f = 900 Hz

    Fig. 3.  Comparison between numerical simulation results and experimental observations of particle interaction process (inset shows the particle trajectories during 6T before collision): (a) f = 5000 Hz; (b) f = 900 Hz.

    图 4  初始夹角对颗粒相互作用特性的影响 (a)颗粒相互作用趋势, 内插图为$\theta _{12}^0$ = 40°时颗粒的运动轨迹; (b)碰撞时间

    Fig. 4.  Influence of initial orientation angle on particle interaction: (a) Trend of particle interaction, inset shows particle trajectories at $\theta _{12}^0$ = 40°; (b) time required for the particles to achieve collision.

    图 5  初始位置对颗粒相互作用特性的影响 (a)颗粒相互作用趋势, 内插图为$x_1^0$ = 0.375λ时颗粒的运动轨迹; (b)碰撞时间

    Fig. 5.  Influence of initial particle position ($x_1^0$) on particle interaction: (a) Trend of particle interaction, inset shows particle trajectories at $x_1^0$ = 0.375λ; (b) time required for the particles to achieve collision.

    图 6  颗粒直径对颗粒相互作用特性的影响 (a)颗粒相互作用趋势, 内插图为直径为1 μm时颗粒的运动轨迹; (b)碰撞时间

    Fig. 6.  Influence of particle diameter on particle interaction: (a) Trend of particle interaction, inset shows particle trajectories at diameters of 1 μm; (b) time required for the particles to achieve collision.

  • [1]

    Lu M S, Fang M X, He M C, Liu S X, Luo Z Y 2019 RSC Adv. 9 5224Google Scholar

    [2]

    Shen G Q, Huang X Y, He C L, Zhang S P, An L S 2018 Powder Technol. 325 145Google Scholar

    [3]

    Fan F X, Zhang M J, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2017 Aerosol Air Qual. Res. 17 1073Google Scholar

    [4]

    Parimanan C, Sattawat C, Pattanaporn L 2018 Powder Technol. 340 243Google Scholar

    [5]

    Herrera C A, Levy E K, Ochs J 2002 AIChE J. 48 503Google Scholar

    [6]

    Francisco J T, Sebastian E, Dirk M, Jurg D, Kai K 2013 Ultrason. Sonochem. 20 655Google Scholar

    [7]

    Kooij S, Astefanei A, Corthals G L, Bonn D 2019 Sci. Rep. 9 6128Google Scholar

    [8]

    An Z S, Huang R J, Zhang R Y, Tie X X, Li G H, Cao J J, Zhou W J, Shi Z G, Han Y M, Gu Z L, Ji Y M 2019 PNAS 116 8657Google Scholar

    [9]

    Jiang X D, Xu H, Wang X 2014 Chin. Phys. B 23 125201Google Scholar

    [10]

    Fan F X, Zhang S H, Wang W Y Yan J P, Su M X 2019 Process Saf. Environ. Prot. 125 197Google Scholar

    [11]

    Fan F X, Zhang S H, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2019 Can. J. Chem. Eng. 97 930Google Scholar

    [12]

    Amiri M, Sadighzadeh A, Falamaki C 2016 Aerosol Air Qual. Res. 16 3012Google Scholar

    [13]

    Qiao Z H, Dong W, Huang Y J, Naso V 2018 J. Environ. Sci. 67 161Google Scholar

    [14]

    Zhang G X, Zhou T T, Zhang L L, Wang J Q, Chi Z H, Hu E 2018 Chem. Eng. J. 334 891Google Scholar

    [15]

    González I, Gallego J A, Riera E 2003 J. Aerosol Sci. 34 1611Google Scholar

    [16]

    Zhang G X, Liu J Z, Wang J, Zhou J H, Cen K F 2012 Chin. Sci. Bull. 57 2404Google Scholar

    [17]

    Fan F X, Yang X F, Kim C N 2013 J. Mech. Sci. Technol. 27 1707Google Scholar

    [18]

    Maknickas A, Markauska D, Kačianauskas R 2016 Part. Sci. Technol. 34 453Google Scholar

    [19]

    Fan F X, Xu X, Zhang S H, Su M X 2019 Aerosol Sci. Technol. 53 1204Google Scholar

    [20]

    Li S Q, Marshall J S, Liu G Q, Yao Q 2011 Prog. Energ. Combust. 37 633Google Scholar

    [21]

    Crowe C T, Schwarzkopf J D, Scommerfeld M, Tsuij Y 2012 Multiphase Flows with Droplets and Particles (2nd Ed.) (New York: CRC Press) pp67−72

    [22]

    González I, Elvira L, Hoffmann T L, Gallego J A 2001 Acta Acust. Acust. 87 454

    [23]

    González I, Hoffmann T L, Gallego J A 2000 Acta Acust. Acust. 86 784

    [24]

    Li S Q, Marshall J S 2007 J. Aerosol Sci. 38 1031Google Scholar

    [25]

    Zhang G X, Zhang L L, Wang J Q, Chi Z H, Hu E 2018 Powder Technol. 323 393Google Scholar

    [26]

    Yan J P, Chen L Q, Yang L J 2016 Chem. Eng. J. 290 319Google Scholar

    [27]

    Zhang G X, Ma Z F, Shen J, Zhang K, Wang J Q, Chi Z H 2020 J. Hazard. Mater. 382 121089Google Scholar

  • [1] 赵豪, 吴志豪, 胡晓红, 凡凤仙, 苏明旭. 外加液滴条件下固体细颗粒声凝并特性. 物理学报, 2023, 72(6): 064702. doi: 10.7498/aps.72.20221912
    [2] 牛晨, 刘忠伟, 杨丽珍, 陈强. 低磁场下驻波对螺旋波等离子体均匀性的影响. 物理学报, 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [3] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [4] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟. 物理学报, 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [5] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [6] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用. 物理学报, 2012, 61(18): 180505. doi: 10.7498/aps.61.180505
    [7] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究. 物理学报, 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [8] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [9] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [10] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [11] 黄虎. 经典三阶驻波、短峰波的有效匹配解. 物理学报, 2009, 58(10): 6761-6763. doi: 10.7498/aps.58.6761
    [12] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [13] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [14] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [15] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响. 物理学报, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [16] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用. 物理学报, 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [17] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质. 物理学报, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [18] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理. 物理学报, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [19] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质. 物理学报, 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [20] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
计量
  • 文章访问数:  7079
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-03-20

/

返回文章
返回