搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜铁镁三掺铌酸锂晶体的第一性原理研究

罗娅 张耘 梁金铃 刘林凤

引用本文:
Citation:

铜铁镁三掺铌酸锂晶体的第一性原理研究

罗娅, 张耘, 梁金铃, 刘林凤

First-principles study of Cu:Fe:Mg:LiNbO3 crystals

Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng
PDF
HTML
导出引用
  • 利用基于密度泛函理论的第一性原理, 研究了Cu:Fe:Mg:LiNbO3晶体及对比组的电子结构和光学特性. 研究显示, 单掺铜或铁铌酸锂晶体的杂质能级分别由Cu 3d轨道或Fe 3d轨道贡献, 禁带宽度分别为3.45和3.42 eV; 铜、铁共掺铌酸锂晶体杂质能级由Cu和Fe的3d轨道共同贡献, 禁带宽度为3.24 eV, 吸收峰分别在3.01, 2.53和1.36 eV处; Cu:Fe:Mg:LiNbO3晶体中Mg2+浓度低于阈值或高于阈值(阈值约为6.0 mol%)的禁带宽度分别为2.89 eV或3.30 eV, 吸收峰分别位于2.45 eV, 1.89 eV或2.89 eV, 2.59 eV, 2.24 eV. Mg2+浓度高于阈值, 会使吸收边较低于阈值情况红移; 并使得部分Fe3+占Nb位, 引起晶体场改变, 从而改变吸收峰位置和强度. 双光存储应用中可选取2.9 eV作为擦除光, 2.5 eV作为读取和写入光, 选取Mg2+浓度达到阈值的三掺晶体在增加动态范围和灵敏度等参量以及优化再现图像的质量等方面更具优势.
    In this paper the electronic structures and optical properties of Cu:Fe:Mg:LiNbO3 crystals and their comparative groups are investigated by first-principles based on the density functional theory to explore the characteristics of charge transfer in crystals and analyse the parameters of the two-colour holographic storage technology based on optical properties of crystals. The basic crystal model is built as a supercell structure 2 × 2 × 1 of near-stoichiometric pure LiNbO3 crystal with 120 atoms, including 24 Li atoms, 24 Nb atoms and 72 O atoms. Above that the five doped crystal models are established as follows: the copper doped LiNbO3 crystal (Cu:LiNbO3), the ferri doped LiNbO3 crystal (Fe:LiNbO3), the copper and ferri co-doped LiNbO3 crystal (Cu:Fe:LiNbO3), the copper, ferri and magnesium tri-doped LiNbO3 crystal (Cu:Fe:Mg:LiNbO3) with doping ions at Li sites, and the copper, ferri and magnesium tri-doped LiNbO3 crystal (Cu:Fe:Mg(E):LiNbO3) with ferri ions at Nb sites and magnesium ions at both Li sites and Nb sites. The last two models represent the concentration of Mg ions below the threshold (~6.0 mol%) and over the threshold respectively. The charge compensation forms are taken successively as $\small {{\rm{Cu}}_{\rm{Li}}^+}\text-{\rm{V}}_{\rm{Li}}^-$, $\small {{\rm{Fe}}_{\rm{Li}}^{2+}}\text-{2\rm{V}}_{\rm{Li}}^-$, ${{\rm{Fe}}_{\rm{Li}}^{2+}}\text-{\rm{Cu}}_{\rm{Li}}^+ \text-{3\rm{V}}_{\rm{Li}}^- $, ${{\rm{Mg}}_{\rm{Li}}^{+} \text-{\rm{Fe}}_{\rm{Li}}^{2+}}\text- $${\rm{Cu}}_{\rm{Li}}^+\text -{4\rm{V}}_{\rm{Li}}^-$ and ${{\rm{3Mg}}_{\rm{Li}}^{+}}\text-{\rm{Mg}}_{\rm{Nb}}^{3-}\text-{\rm{Fe}}_{\rm{Nb}}^{2-} \text-{2\rm{Cu}}_{\rm{Li}}^+$in doped models. The results show that the extrinsic defect levels within the forbidden band of Cu:LiNbO3 crystal and Fe:LiNbO3 crystal are mainly contributed by the 3d orbits of Cu ions and the 3d orbits of Fe ions respectively. The forbidden band widths are 3.45 eV and 3.42 eV respetively in these two samples. In Cu:Fe:LiNbO3 crystal, the impurity levels are contributed by the 3d orbits of Cu and Fe ions; the forbidden band width is 3.24 eV; the absorption peaks are formed at 1.36, 2.53, and 3.01 eV. The Cu:Fe:Mg:LiNbO3 and Cu:Fe:Mg(E):LiNbO3 crystal presentthe forbidden band width of 2.89 eV and 3.30 eV respectively; the absorption peaks are formed at 2.45, 1.89 eV and 2.89, 2.59 eV, 2.24 eV, respectively. In Cu:Fe:Mg:LiNbO3 crystal, the weak absorption peak at 3.01 eV disappears, beacause of the superposition of the red-shifted absorption edge and the next bigger peak. The peak locations move slightly, which can be explained by the crystal field changing under the different doping concentrations and the different occupying positions of doping ions. In Cu:Fe:Mg(E):LiNbO3 crystal, the absorption peak near 2.5 eV is stronger than that of the other tri-doped crystal, which may be caused by the deference in occupancy among Fe ions. The peak at 2.9 eV can be chosen as erasing light, and the peak at 2.5 eV as write and read light in the two-center nonvolatile holography. The tri-doped crystal with Mg2+ concentration over the threshold shows obvious absorption peak at 2.9 eV and stronger absorption at 2.5 eV, which is beneficial for this application. The strong absorption of write light can shorten the time to reach the saturation of diffraction efficiency, then increase the dynamic range (M/#) and the sensitivity (S). Meanwhile, in this Mg doping condition, write time can be shortened, so optical damage can be weakened, and finally the image quality can be optimized.
      通信作者: 张耘, yzhang@swu.edu.cn
    • 基金项目: 其它-中央高校基本科研业务费专项基金(批准号:XDJK2018B034)资助的课题(XDJK2018B034)
      Corresponding author: Zhang Yun, yzhang@swu.edu.cn
    [1]

    Adibi A, Buse K, Psaltis D 2001 J. Opt. Soc. Am. B: Opt. Phys. 18 584

    [2]

    Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413Google Scholar

    [3]

    Vonderlinde D, Glass A M, Rodgers K F 1974 Appl. Phys. Lett. 25 155Google Scholar

    [4]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665Google Scholar

    [5]

    Zhang X, Liang G J, Xu Z P 2019 Opt. Mater. 96 109318Google Scholar

    [6]

    Chen Y, Piao R Q, Zhang C Y, Zhang Z B, Xu J Q, Zhang D L 2018 Appl. Phys. B 124 206

    [7]

    Xu C, Leng X S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868

    [8]

    Liu D, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809Google Scholar

    [9]

    Chen S L, Liu H D, Kong Y F, Huang Z H, Xu J J 2006 Cryst. Res. Technol. 41 790Google Scholar

    [10]

    王锐, 徐衍岭, 韦永德, 赵朝中 2001 光子学报 30 1307

    Wang R, Xu Y L, Wei Y D, Zhao C Z 2001 Acta Photonica Sin. 30 1307

    [11]

    Dai L, Liu C R, Tan C, Yan Z H, Xu Y H 2017 Chin. Phys. B 26 044207Google Scholar

    [12]

    Wang L P, Dai L, Liu C R, Han X B, Shao Y, Xu Y H 2019 Opt. Mater. 89 118Google Scholar

    [13]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013Google Scholar

    [14]

    孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页

    Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese)

    [15]

    Kuang M Q, Wu S Y, Zhang H M 2012 Optik 123 1601Google Scholar

    [16]

    Dai L, Han X B, Shao Y, Wang L P, Liu C R, Xu Y H 2018 Mod. Phys. Lett. B 32 1850328

    [17]

    Zaldo C, Prieto C 1992 Ferroelectrics 134 47Google Scholar

    [18]

    Boker A, Donnerberg H, Schirmer O F, Feng X Q 1990 J. Phys. Condens. Matter. 2 6865Google Scholar

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [20]

    Segall M D, Lindan PJ D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar

    [21]

    赵佰强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212Google Scholar

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212Google Scholar

    [22]

    Wang W W, Zheng D H, Hu M Y, Saeed S, Liu H D, Kong Y F, Zhang L X, Xu J J 2019 Materials 12 100

    [23]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347Google Scholar

    [24]

    Boysen H, Altorfer F 1994 Acta Cryst. B 50 405Google Scholar

    [25]

    戴维, 杰尼斯著 (李建, 周勇译) 2014 密度泛函理论(北京: 国防工业出版社) 第220—224页

    David S S, Janice A S (translated by Li J, Zhou Y) 2014 Density Functional Theory (Beijing: National Defense Industry Press) pp220–224 (in Chinese)

    [26]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401Google Scholar

    [27]

    Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333Google Scholar

    [28]

    Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424Google Scholar

    [29]

    潘道铠, 赵成大, 郑载兴1983 物质结构 (北京: 人民教育出版社) 第340—346页

    Pan D K, Zhao C D, Zheng Z X 1983 Material Structure (Beijing: People Education Press) pp340–346 (in Chinese)

    [30]

    高攀, 柳清菊, 张学军 2010 物理学报 59 4930Google Scholar

    Gao P, Liu Q J, Zhang X J 2010 Acta phys. Sin. 59 4930Google Scholar

    [31]

    Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109

    [32]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94Google Scholar

    [33]

    Zhang T, Wang B, Ling F R, Fang S Q, Xu Y H 2004 Mater. Chem. Phys. 83 350Google Scholar

    [34]

    Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, Lukasiewicz T 2003 Opt. Mater. 22 257Google Scholar

    [35]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 1491Google Scholar

    [36]

    Dai L, Jiao S S, Xu C, Li D Y, Lin J Q, Xu Y H 2014 Mod. Phys. Lett. B 28 1450038

  • 图 1  晶体结构模型 (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5

    Fig. 1.  Structures of crystals: (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5.

    图 2  LN总能量的迭代变化

    Fig. 2.  Total energy of geometry optimization in LN crystal.

    图 3  LN及不同掺杂LN晶体的能带结构图 (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5

    Fig. 3.  Band structures of LN and different doped LN crystals: (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5.

    图 4  晶体禁带附近分态密度图 (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5

    Fig. 4.  partial densities of states near the forbidden band: (a) LN; (b) LN1; (c) LN2; (d) LN3; (e) LN4; (f) LN5.

    图 5  LN及各掺杂体系光吸收光谱

    Fig. 5.  Absorption of LN and different doped LN crystals.

    表 1  LN晶体内各原子坐标

    Table 1.  Coordinates of atoms within LN crystal.

    AtomOxidation stateX/nmY/nmZ/nm
    Li1000.2802
    Nb5000
    O–20.04770.34350.0633
    下载: 导出CSV

    表 2  掺杂LN晶体样本

    Table 2.  Samples of doped LN crystal.

    符号LN1LN2LN3LN4LN5
    晶体名称Cu:LNFe:LNCu:Fe:LNCu:Fe:Mg:LNCu:Fe:Mg(E):LN
    占位及电荷补偿${ {\rm{Cu} }_{\rm{Li} }^+}\text-{\rm{V} }_{\rm{Li} }^-$ ${ {\rm{Fe} }_{\rm{Li} }^{2+} }\text-{2\rm{V} }_{\rm{Li} }^-$$ { {\rm{Fe} }_{\rm{Li} }^{2+} }\text-{\rm{Cu} }_{\rm{Li} }^+ \text-{3\rm{V} }_{\rm{Li} }^-$$ { {\rm{Mg} }_{\rm{Li} }^{+}\text-{\rm{Fe} }_{\rm{Li} }^{2+} }\text-{\rm{Cu} }_{\rm{Li} }^+ \text-{4\rm{V} }_{\rm{Li} }^-$$ { {\rm{3Mg} }_{\rm{Li} }^{+} }\text-{\rm{Mg} }_{\rm{Nb} }^{3-}\text-{\rm{Fe} }_{\rm{Nb} }^{2-} \text-{2\rm{Cu} }_{\rm{Li} }^+$
    下载: 导出CSV

    表 3  LN晶体常数的几何优化值与实验值

    Table 3.  Geometry optimization result and experiment values of LN crystal.

    Lattice parametera/ nmb/ nmc/ nmV/ nm3
    Experimental value1.029661.029661.386301.27284
    Optimization result1.048291.048291.413211.33821
    下载: 导出CSV
  • [1]

    Adibi A, Buse K, Psaltis D 2001 J. Opt. Soc. Am. B: Opt. Phys. 18 584

    [2]

    Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413Google Scholar

    [3]

    Vonderlinde D, Glass A M, Rodgers K F 1974 Appl. Phys. Lett. 25 155Google Scholar

    [4]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665Google Scholar

    [5]

    Zhang X, Liang G J, Xu Z P 2019 Opt. Mater. 96 109318Google Scholar

    [6]

    Chen Y, Piao R Q, Zhang C Y, Zhang Z B, Xu J Q, Zhang D L 2018 Appl. Phys. B 124 206

    [7]

    Xu C, Leng X S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868

    [8]

    Liu D, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809Google Scholar

    [9]

    Chen S L, Liu H D, Kong Y F, Huang Z H, Xu J J 2006 Cryst. Res. Technol. 41 790Google Scholar

    [10]

    王锐, 徐衍岭, 韦永德, 赵朝中 2001 光子学报 30 1307

    Wang R, Xu Y L, Wei Y D, Zhao C Z 2001 Acta Photonica Sin. 30 1307

    [11]

    Dai L, Liu C R, Tan C, Yan Z H, Xu Y H 2017 Chin. Phys. B 26 044207Google Scholar

    [12]

    Wang L P, Dai L, Liu C R, Han X B, Shao Y, Xu Y H 2019 Opt. Mater. 89 118Google Scholar

    [13]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013Google Scholar

    [14]

    孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页

    Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese)

    [15]

    Kuang M Q, Wu S Y, Zhang H M 2012 Optik 123 1601Google Scholar

    [16]

    Dai L, Han X B, Shao Y, Wang L P, Liu C R, Xu Y H 2018 Mod. Phys. Lett. B 32 1850328

    [17]

    Zaldo C, Prieto C 1992 Ferroelectrics 134 47Google Scholar

    [18]

    Boker A, Donnerberg H, Schirmer O F, Feng X Q 1990 J. Phys. Condens. Matter. 2 6865Google Scholar

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [20]

    Segall M D, Lindan PJ D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar

    [21]

    赵佰强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212Google Scholar

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212Google Scholar

    [22]

    Wang W W, Zheng D H, Hu M Y, Saeed S, Liu H D, Kong Y F, Zhang L X, Xu J J 2019 Materials 12 100

    [23]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347Google Scholar

    [24]

    Boysen H, Altorfer F 1994 Acta Cryst. B 50 405Google Scholar

    [25]

    戴维, 杰尼斯著 (李建, 周勇译) 2014 密度泛函理论(北京: 国防工业出版社) 第220—224页

    David S S, Janice A S (translated by Li J, Zhou Y) 2014 Density Functional Theory (Beijing: National Defense Industry Press) pp220–224 (in Chinese)

    [26]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401Google Scholar

    [27]

    Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333Google Scholar

    [28]

    Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424Google Scholar

    [29]

    潘道铠, 赵成大, 郑载兴1983 物质结构 (北京: 人民教育出版社) 第340—346页

    Pan D K, Zhao C D, Zheng Z X 1983 Material Structure (Beijing: People Education Press) pp340–346 (in Chinese)

    [30]

    高攀, 柳清菊, 张学军 2010 物理学报 59 4930Google Scholar

    Gao P, Liu Q J, Zhang X J 2010 Acta phys. Sin. 59 4930Google Scholar

    [31]

    Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109

    [32]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94Google Scholar

    [33]

    Zhang T, Wang B, Ling F R, Fang S Q, Xu Y H 2004 Mater. Chem. Phys. 83 350Google Scholar

    [34]

    Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, Lukasiewicz T 2003 Opt. Mater. 22 257Google Scholar

    [35]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 1491Google Scholar

    [36]

    Dai L, Jiao S S, Xu C, Li D Y, Lin J Q, Xu Y H 2014 Mod. Phys. Lett. B 28 1450038

  • [1] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [2] 轩书科. 钾钡共掺菲分子结构和电子特性的第一性原理研究. 物理学报, 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响. 物理学报, 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [7] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响. 物理学报, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [9] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [10] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [11] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [12] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [13] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [14] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [15] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [16] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [17] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [18] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [19] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [20] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
计量
  • 文章访问数:  7363
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-01-06
  • 刊出日期:  2020-03-05

/

返回文章
返回