搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响

刘文姝 高润亮 冯红梅 刘悦悦 黄怡 王建波 刘青芳

引用本文:
Citation:

真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响

刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳

Influence of magentic annealing temperature on microstructure and magnetic properties of NiCu alloy film

Liu Wen-Shu, Gao Run-Liang, Feng Hong-Mei, Liu Yue-Yue, Huang Yi, Wang Jian-Bo, Liu Qing-Fang
PDF
HTML
导出引用
  • 利用射频磁控共溅射方法, 在Si衬底上制备了Ni88Cu12薄膜, 并且研究了膜厚以及真空磁场热处理温度对畴结构和磁性的影响. X射线衍射结果表明热处理后的薄膜晶粒长大, 扫描电子显微镜结果发现不同热处理温度下薄膜表现出不同的形貌特征. 热处理前后的薄膜面内归一化磁滞回线结果显示, 经过热处理的Ni88Cu12薄膜条纹畴形成的临界厚度降低, 未热处理的Ni88Cu12薄膜在膜厚为210 nm时出现条纹畴结构, 而经过 300 ℃热处理的Ni88Cu12薄膜在膜厚为105 nm就出现了条纹畴结构. 高频磁谱的结果表明, 随着热处理温度的增加, Ni88Cu12薄膜的共振峰会有小范围的移动.
    In this paper, Ni88Cu12 thin films are prepared on Si substrates by radio-frequency magnetron co-sputtering. The effects of film thickness and heat treatment on domain structure and magnetic properties are studied. The Ni88Cu12 films with thickness less than 210 nm show weak in-plane anisotropy. After the vacuum magnetic field heat treatment, the crystal grains of all films grow, and the in-plane anisotropy extents of Ni88Cu12 films with thickness less than 210 nm become weaker. The films have different morphological characteristics at different heat treatment temperatures. The surface of the film is very dense before heat treatment. After heat treatment at 300 °C, it forms island shape due to the solid solution between the grains. Compared with the grains on the surface of the heat-treated film at 300 °C, the grains grow further after being heat-treated at 400 °C. Grown grains cover the gaps between the grains, which makes the film surface flat. The results of in-plane normalized hysteresis loop of the films show that the critical thickness of the stripe domains decreases after heat treatment. The stripe domain structure appears in the 210-nm-thick films without being heat-treated. For the film with the heat treatment, its remanence ratio Mr/Ms decreases, and the saturation field Hs increases, and thus leading the perpendicular anisotropy constant Kp to increase. Therefore, the thickness of the stripe domain in the film after being heat-treated decreases. Compared with the films after being heat-treated, the 105-nm-thick as-prepared Ni88Cu12 film has a maximum natural resonance frequency of 2.1 GHz, which is attributed to the uniaxial anisotropy of the as-prepared Ni88Cu12 film. The saturation magnetization of the 300 °C-treated 105-nm-thick film decreases to 3.01 × 105 A/m. However, the saturation magnetization decreases to 5.9 × 105 A/m after heat treatment at 400 °C. Moreover, the ferromagnetic resonance peak of the film narrows after being treated at 300 °C, and the resonance frequency decreases to 1.95 GHz.
      通信作者: 刘青芳, liuqf@lzu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51771086)
      Corresponding author: Liu Qing-Fang, liuqf@lzu.edu.cn
    [1]

    Lekas M, Davies R, Sturcken N 2018 IEEE Magn. Lett. 10 1Google Scholar

    [2]

    Greaves S, Kanai Y 2018 IEEE Trans. Magn. 55 1Google Scholar

    [3]

    Feng H, Zhu Z, Liu W, Li X, Xie H, Liu Q, Wang J 2019 J. Mater. Sci. 54 14189Google Scholar

    [4]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [5]

    Phuoc N N, Ong C K 2013 J. Phys. D: Appl. Phys. 46 485002Google Scholar

    [6]

    李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟 2016 物理学报 65 217501Google Scholar

    Li J C, Zhan Q F, Pan M J, Liu L P, Yang H L, Xie Y L, Xie S H, Li R W 2016 Acta Phys. Sin. 65 217501Google Scholar

    [7]

    Ziberi B, Frost F, Höche T, Rauschenbach B 2005 Phys. Rev. B 72 235310Google Scholar

    [8]

    Zhou C, You M, Ding L, Feng C, Xu M, Wang S 2019 Appl. Phys. A 125 174Google Scholar

    [9]

    Spain R 1965 Appl. Phys. Lett. 6 8Google Scholar

    [10]

    Cao D, Wang Z, Feng E, Wei J, Wang J, Liu Q 2013 J. Alloys Compd. 581 66Google Scholar

    [11]

    Wei J, Zhu Z, Feng H, Du J, Liu Q, Wang J 2015 J. Phys. D: Appl. Phys. 48 465001Google Scholar

    [12]

    Prosen R J, Holmen J O, Gran B E 1961 J. Appl. Phys. 32 S91Google Scholar

    [13]

    Iwata T, Prosen R J, Gran B E 1966 J. Appl. Phys. 37 1285Google Scholar

    [14]

    Amos N, Fernandez R, Ikkawi R, Lee E, Lavrenov A, Litvinov l K D, Khizroev S 2008 J. Appl. Phys. 103 07E732Google Scholar

    [15]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [16]

    Brandenburg J, Hühne R, Schultz L, Neu V 2009 Phys. Rev. B 79 054429Google Scholar

    [17]

    Vladyslav A, Vas’ko, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [18]

    Zou P, Yu W, Bain J A 2002 J. Appl. Phys. 91 7830Google Scholar

    [19]

    Phuoc N N, Ong C K 2013 J. Appl. Phys. 114 023901Google Scholar

    [20]

    王锐, 郑富, 罗飞龙, 娄元付, 王颖, 曹江伟, 白建民, 魏福林, 阿谢卡姆津 2013 物理学报 62 217503Google Scholar

    Wang R, Zheng F, Luo F L, Lou Y F, Wang Y, Cao J W, Bai J M, Wei F L, Kamzin A S 2013 Acta Phys. Sin. 62 217503Google Scholar

    [21]

    Cao D, Pan L, Cheng X, Wang Z, Feng H, Zhu Z, Xu J, Li Q, Li S, Wang J, Liu Q 2018 J. Phys. D: Appl. Phys. 51 025001Google Scholar

    [22]

    Leva E S, Valente R C, Tabares F M, Mansilla M V 2010 Phys. Rev. B 82 144410Google Scholar

    [23]

    Tu Y O 1981 J. Appl. Phys. 52 3130Google Scholar

    [24]

    Debonte W J 1975 IEEE Trans. Magn. 11 3Google Scholar

    [25]

    郑富, 陈治鹏, 马亚楠, 周俊 2017 磁性材料及器件 48 19701Google Scholar

    Zheng F, Chen Z P, Ma YN, Zhou J 2017 J. Magn. Mater. Devices 48 19701Google Scholar

    [26]

    Patterson A L 1939 Phys. Rev. 56 978Google Scholar

    [27]

    Soh W T, Phuoc N N, Tan C Y, Ong C K 2013 J. Appl. Phys. 114 053908Google Scholar

    [28]

    Sultan M, Singh R 2010 JPCS 200 072090Google Scholar

    [29]

    Shah L R, Fan X, Kou X, Wang W G, Zhang Y P, Lou J, Sun N X, Xiao J Q 2010 J. Appl. Phys. 107 09D909Google Scholar

    [30]

    Bhoi B, Venkataramani N, Aiyar R, Prasad S, Kostylev M 2018 IEEE Trans. Magn. 54 2801205Google Scholar

  • 图 1  斜溅射制备磁性薄膜示意图(HA, 难轴方向)

    Fig. 1.  Schematic diagram of oblique sputtering for preparing magnetic films (HA, hard axis).

    图 2  未进行热处理的膜厚为(a) 105 nm, (b) 210 nm和(c) 262 nm的Ni88Cu12薄膜的MFM图像; (d)不同厚度Ni88Cu12薄膜的面内归一化磁滞回线; (e)薄膜的Mr/Ms随薄膜厚度的变化

    Fig. 2.  The MFM images of (a) 105 nm, (b) 210 nm and (c) 262 nm-thick Ni88Cu12 films before heat treatment; (d) in-plane normalized hysteresis loop of Ni88Cu12; (e) remanence ratio vs. film thickness.

    图 3  (a)厚度为105 nm的Ni88Cu12薄膜热处理前后的XRD图谱; 厚度为105 nm的Ni88Cu12薄膜在(b)热处理前、(c) 300 ºC热处理后和(d) 400 ºC热处理后的SEM形貌图

    Fig. 3.  (a) XRD pattern of 105 nm-thick Ni88Cu12 film before and after heat treatment; the SEM surface morphology of 105 nm-thick Ni88Cu12 films (b) before heat treatment, (c) after 300 ºC heat treatment, and (d) after 400 ºC heat treatment.

    图 4  (a)厚度为105 nm的Ni88Cu12薄膜在热处理前后的归一化磁滞回线; (b)厚度为105 nm的Ni88Cu12薄膜在热处理前、(c) 300 ℃热处理后和(d) 400 ℃热处理后的MFM图像

    Fig. 4.  (a) In-plane normalized hysteresis loop of 105 nm-thick Ni88Cu12 film before and after heat treatment; The MFM images of 105 nm-thick Ni88Cu12 films (b) before heat treatment, (c) after 300 ºC heat treatment, and (d) after 400 ºC heat treatment.

    图 5  厚度为105 nm的Ni88Cu12薄膜热处理前后磁谱

    Fig. 5.  Permeability spectra of 105 nm-thick Ni88Cu12 film before and after heat treatment.

  • [1]

    Lekas M, Davies R, Sturcken N 2018 IEEE Magn. Lett. 10 1Google Scholar

    [2]

    Greaves S, Kanai Y 2018 IEEE Trans. Magn. 55 1Google Scholar

    [3]

    Feng H, Zhu Z, Liu W, Li X, Xie H, Liu Q, Wang J 2019 J. Mater. Sci. 54 14189Google Scholar

    [4]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [5]

    Phuoc N N, Ong C K 2013 J. Phys. D: Appl. Phys. 46 485002Google Scholar

    [6]

    李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟 2016 物理学报 65 217501Google Scholar

    Li J C, Zhan Q F, Pan M J, Liu L P, Yang H L, Xie Y L, Xie S H, Li R W 2016 Acta Phys. Sin. 65 217501Google Scholar

    [7]

    Ziberi B, Frost F, Höche T, Rauschenbach B 2005 Phys. Rev. B 72 235310Google Scholar

    [8]

    Zhou C, You M, Ding L, Feng C, Xu M, Wang S 2019 Appl. Phys. A 125 174Google Scholar

    [9]

    Spain R 1965 Appl. Phys. Lett. 6 8Google Scholar

    [10]

    Cao D, Wang Z, Feng E, Wei J, Wang J, Liu Q 2013 J. Alloys Compd. 581 66Google Scholar

    [11]

    Wei J, Zhu Z, Feng H, Du J, Liu Q, Wang J 2015 J. Phys. D: Appl. Phys. 48 465001Google Scholar

    [12]

    Prosen R J, Holmen J O, Gran B E 1961 J. Appl. Phys. 32 S91Google Scholar

    [13]

    Iwata T, Prosen R J, Gran B E 1966 J. Appl. Phys. 37 1285Google Scholar

    [14]

    Amos N, Fernandez R, Ikkawi R, Lee E, Lavrenov A, Litvinov l K D, Khizroev S 2008 J. Appl. Phys. 103 07E732Google Scholar

    [15]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [16]

    Brandenburg J, Hühne R, Schultz L, Neu V 2009 Phys. Rev. B 79 054429Google Scholar

    [17]

    Vladyslav A, Vas’ko, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [18]

    Zou P, Yu W, Bain J A 2002 J. Appl. Phys. 91 7830Google Scholar

    [19]

    Phuoc N N, Ong C K 2013 J. Appl. Phys. 114 023901Google Scholar

    [20]

    王锐, 郑富, 罗飞龙, 娄元付, 王颖, 曹江伟, 白建民, 魏福林, 阿谢卡姆津 2013 物理学报 62 217503Google Scholar

    Wang R, Zheng F, Luo F L, Lou Y F, Wang Y, Cao J W, Bai J M, Wei F L, Kamzin A S 2013 Acta Phys. Sin. 62 217503Google Scholar

    [21]

    Cao D, Pan L, Cheng X, Wang Z, Feng H, Zhu Z, Xu J, Li Q, Li S, Wang J, Liu Q 2018 J. Phys. D: Appl. Phys. 51 025001Google Scholar

    [22]

    Leva E S, Valente R C, Tabares F M, Mansilla M V 2010 Phys. Rev. B 82 144410Google Scholar

    [23]

    Tu Y O 1981 J. Appl. Phys. 52 3130Google Scholar

    [24]

    Debonte W J 1975 IEEE Trans. Magn. 11 3Google Scholar

    [25]

    郑富, 陈治鹏, 马亚楠, 周俊 2017 磁性材料及器件 48 19701Google Scholar

    Zheng F, Chen Z P, Ma YN, Zhou J 2017 J. Magn. Mater. Devices 48 19701Google Scholar

    [26]

    Patterson A L 1939 Phys. Rev. 56 978Google Scholar

    [27]

    Soh W T, Phuoc N N, Tan C Y, Ong C K 2013 J. Appl. Phys. 114 053908Google Scholar

    [28]

    Sultan M, Singh R 2010 JPCS 200 072090Google Scholar

    [29]

    Shah L R, Fan X, Kou X, Wang W G, Zhang Y P, Lou J, Sun N X, Xiao J Q 2010 J. Appl. Phys. 107 09D909Google Scholar

    [30]

    Bhoi B, Venkataramani N, Aiyar R, Prasad S, Kostylev M 2018 IEEE Trans. Magn. 54 2801205Google Scholar

  • [1] 韦炳军, 胡立, 向鑫, 杨飞龙, 张桂凯, 王欢. CLAM钢表面Fe-Al合金渗层的制备. 物理学报, 2021, 70(3): 036801. doi: 10.7498/aps.70.20200762
    [2] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [3] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [4] 胡克艳, 徐军, 唐慧丽, 李红军, 邹宇琦, 苏良碧, 陈伟超, 于海欧, 杨秋红. 铁钛共掺强韧化蓝宝石晶体的研究. 物理学报, 2013, 62(6): 066201. doi: 10.7498/aps.62.066201
    [5] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [6] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [7] 郑立仁, 黄柏标, 尉吉勇, 戴瑛. 非晶SiOx:C颗粒在空气中经高温煅烧后光学性质的研究. 物理学报, 2012, 61(21): 217803. doi: 10.7498/aps.61.217803
    [8] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究. 物理学报, 2012, 61(8): 084215. doi: 10.7498/aps.61.084215
    [9] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [10] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [11] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [12] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [13] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [14] 李盛涛, 成鹏飞, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [15] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [16] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响. 物理学报, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [17] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [18] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [19] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [20] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
计量
  • 文章访问数:  7335
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-21
  • 修回日期:  2020-02-06
  • 刊出日期:  2020-05-05

/

返回文章
返回