-
As a member of the metal phosphorus trichalcogenide family, MPS3 is widely used in nonlinear optics and devices, which can be regarded as a significant benefit for the excellent photonic and optoelectronic properties. In this work, the MnPS3 nanosheet is prepared by the chemical vapor transport method and the MnPS3 saturable absorber is demonstrated by modifying mechanical exfoliation. To the best of our knowledge, the dual-wavelength self-starting mode-locking erbium-doped fiber laser with MnPS3 saturable absorber is demonstrated for the first time. The dual wavelength mode-locked laser with a pulse repetition rate of 5.102 MHz at 1565.19 nm and 1565.63 nm is proposed. Its maximum output power at the dual-wavelength is 27.2 MW. The mode-locked laser can self-start and stably run for more than 280 h.
-
Keywords:
- MnPS3 nanosheets /
- saturable absorber /
- mode-locking
[1] Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar
[2] Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar
[3] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[4] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar
[5] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar
[6] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar
[7] Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar
[8] Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar
[9] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar
[10] Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar
[11] Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar
[12] Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar
[13] Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar
[14] Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar
[15] Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar
[16] Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar
[17] 史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)
Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)
[18] Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar
[19] Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar
[20] Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar
[21] Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar
[22] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar
[23] Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar
[24] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar
[25] Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar
[26] Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar
[27] Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar
[28] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar
Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar
[29] Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar
[30] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar
[31] Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar
[32] Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar
[33] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar
-
图 5 基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号
Fig. 5. Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).
-
[1] Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar
[2] Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar
[3] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[4] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar
[5] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar
[6] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar
[7] Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar
[8] Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar
[9] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar
[10] Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar
[11] Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar
[12] Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar
[13] Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar
[14] Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar
[15] Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar
[16] Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar
[17] 史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)
Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)
[18] Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar
[19] Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar
[20] Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar
[21] Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar
[22] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar
[23] Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar
[24] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar
[25] Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar
[26] Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar
[27] Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar
[28] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar
Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar
[29] Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar
[30] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar
[31] Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar
[32] Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar
[33] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar
计量
- 文章访问数: 11027
- PDF下载量: 326
- 被引次数: 0