搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光

俞强 郭琨 陈捷 王涛 汪进 史鑫尧 吴坚 张凯 周朴

引用本文:
Citation:

MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光

俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴

Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber

Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu
PDF
HTML
导出引用
  • 过渡金属硫代亚磷酸盐MnPS3是三元含磷二维材料, 具有新颖的光电特性. 采用化学气相传输方法生长MnPS3单晶, 结合机械剥离方法制备可饱和吸收体光纤调制器件. 以MnPS3可饱和吸收体构建掺铒光纤环形激光器, 实现脉冲间隔为196.1 ns, 脉冲宽度为3.8 ns, 最高输出功率为27.2 mW, 1565.19 nm和1565.63 nm双波长锁模脉冲激光输出, 实现280 h以上高稳定自启动双波长锁模输出.
    As a member of the metal phosphorus trichalcogenide family, MPS3 is widely used in nonlinear optics and devices, which can be regarded as a significant benefit for the excellent photonic and optoelectronic properties. In this work, the MnPS3 nanosheet is prepared by the chemical vapor transport method and the MnPS3 saturable absorber is demonstrated by modifying mechanical exfoliation. To the best of our knowledge, the dual-wavelength self-starting mode-locking erbium-doped fiber laser with MnPS3 saturable absorber is demonstrated for the first time. The dual wavelength mode-locked laser with a pulse repetition rate of 5.102 MHz at 1565.19 nm and 1565.63 nm is proposed. Its maximum output power at the dual-wavelength is 27.2 MW. The mode-locked laser can self-start and stably run for more than 280 h.
      通信作者: 吴坚, wujian15@nudt.edu.cn ; 张凯, kzhang2015@sinano.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61922082, 61875223, 61801472)和湖南省自然科学基金(批准号: 2018JJ3610)资助的课题
      Corresponding author: Wu Jian, wujian15@nudt.edu.cn ; Zhang Kai, kzhang2015@sinano.ac.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61922082, 61875223, 61801472) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3610)
    [1]

    Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar

    [2]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [3]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [4]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [5]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar

    [6]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [7]

    Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar

    [8]

    Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar

    [9]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [10]

    Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar

    [11]

    Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar

    [12]

    Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar

    [13]

    Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar

    [14]

    Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar

    [15]

    Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar

    [16]

    Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar

    [17]

    史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)

    Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [18]

    Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [19]

    Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [20]

    Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar

    [21]

    Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar

    [22]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [23]

    Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar

    [24]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [25]

    Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar

    [26]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [27]

    Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar

    [28]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [29]

    Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar

    [30]

    Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar

    [31]

    Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar

    [32]

    Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar

    [33]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

  • 图 1  MnPS3晶体生长及表征 (a)化学气相传输法制备MnPS3晶体的工艺流程示意图; (b) MnPS3单晶的照片; (c) MnPS3单晶的拉曼光谱

    Fig. 1.  Characteristics of MnPS3 crystals: (a) Chemical vapor transport method; (b) picture of MnPS3; (c) Raman spectrum for MnPS3

    图 2  MnPS3-SA的SEM表征 (a)随机选取的样品SEM图像和元素分析表; (b)−(d) Mn, P和S的EDX元素面扫描

    Fig. 2.  SEM characteristics of MnPS3 -SA: (a) SEM image of a randomly selected MnPS3 flake, and elemental analysis of this sample; (b)−(d) EDX element mappings for Mn, P, and S.

    图 3  MnPS3纳米片的TEM表征 (a) MnPS3纳米片形貌; (b) MnPS3纳米片的HRTEM像; (c) SAED图

    Fig. 3.  TEM characterization of MnPS3 nanosheets: (a) TEM image of a MnPS3 nanosheet on a copper grid; (b) the HRTEM image of the MnPS3 nanosheet; (c) the corresponding SAED showing its single crystal nature.

    图 4  MnPS3-SA掺铒光纤激光器的实验装置

    Fig. 4.  Experimental setup of the erbium-doped fiber laser.

    图 5  基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号

    Fig. 5.  Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).

    图 6  基于MnPS3-SA的脉冲光纤激光器在70, 120, 170, 220和270 mW抽运功率下的(a)光谱、(b)波长和(c)频率特性

    Fig. 6.  Performances of the pulse fiber laser based on MnPS3-SA with the pump power at 70, 120, 170, 220, and 270 mW pump power: (a) Spectrum; (b) wavelength; (c) frequency.

    图 7  基于MnPS3-SA的脉冲激光长时间工作稳定性 (a)第1, 7, 8, 11, 12 天的输出光谱; (b)中心波长; (c)输出功率

    Fig. 7.  Output spectrum of the EDFL based on MnPS3-SA: (a) Output spectrum recorded on 1st, 7th, 8th, 11th, 12th day; (b) wavelength peak position; (c) output power.

  • [1]

    Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar

    [2]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [3]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [4]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [5]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar

    [6]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [7]

    Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar

    [8]

    Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar

    [9]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [10]

    Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar

    [11]

    Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar

    [12]

    Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar

    [13]

    Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar

    [14]

    Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar

    [15]

    Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar

    [16]

    Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar

    [17]

    史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)

    Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [18]

    Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [19]

    Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [20]

    Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar

    [21]

    Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar

    [22]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [23]

    Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar

    [24]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [25]

    Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar

    [26]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [27]

    Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar

    [28]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [29]

    Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar

    [30]

    Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar

    [31]

    Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar

    [32]

    Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar

    [33]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

  • [1] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器. 物理学报, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [3] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [4] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [5] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器. 物理学报, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [6] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [7] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [8] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [9] 连富强, 樊仲维, 白振岙, 刘一州, 林蔚然, 张晓雷, 赵天卓. 高稳定性、高质量脉冲压缩飞秒光纤激光系统研究. 物理学报, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [10] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [11] 连富强, 樊仲维, 白振岙, 余锦, 林蔚然, 张晓雷, 刘迪, 赵天卓. 基于1064 nm光纤皮秒种子源的Nd:YAG再生放大器. 物理学报, 2014, 63(13): 134207. doi: 10.7498/aps.63.134207
    [12] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [13] 曹士英, 朱月, 柴路, 王清月, 张志刚. 半导体可饱和吸收镜锁模的钒酸盐混晶Nd:Gd0.1Y0.9VO4激光器. 物理学报, 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [14] 柴 路, 颜 石, 薛迎红, 刘庆文, 葛文琦, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 镱、钠共掺的氟化钙晶体在1050nm的可饱和吸收作用. 物理学报, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [15] 林宏奂, 卢振华, 王建军, 张 颖, 王凤蕊, 许党朋, 张 锐, 李明中, 邓青华, 罗亦鸣, 唐 军, 丁 磊. 正色散激光器中的增益导引孤子. 物理学报, 2008, 57(9): 5646-5650. doi: 10.7498/aps.57.5646
    [16] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [17] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究. 物理学报, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [18] 柴路, 王清月, 赵江山, 邢歧荣, 张志刚. 半导体可饱和吸收镜启动克尔透镜锁模机理的实验研究. 物理学报, 2001, 50(7): 1298-1301. doi: 10.7498/aps.50.1298
    [19] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析. 物理学报, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
    [20] 李世忱. LiNbO3晶体压电应变光束调制器及激光锁模器解析. 物理学报, 1993, 42(6): 1020-1026. doi: 10.7498/aps.42.1020
计量
  • 文章访问数:  10351
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-03-29
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-09-20

/

返回文章
返回