搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强型视觉密码的光学信息隐藏系统

于韬 杨栋宇 马锐 祝玉鹏 史祎诗

引用本文:
Citation:

基于增强型视觉密码的光学信息隐藏系统

于韬, 杨栋宇, 马锐, 祝玉鹏, 史祎诗

Enhanced-visual-cryptography-based optical information hiding system

Yu Tao, Yang Dong-Yu, Ma Rui, Zhu Yu-Peng, Shi Yi-Shi
PDF
HTML
导出引用
  • 提出了一种基于增强型视觉密码的光学信息隐藏系统. 该系统可将秘密图像分解为多幅有实际意义的分享图像, 然后将这些分享图像隐藏在相位密钥中, 相位密钥可以制成衍射光学元件, 以实体的形式保存和传输, 扩展了视觉密码的应用范围. 在提取过程中, 只需要使用激光照射衍射光学元件, 再现分享图像, 然后只需要将一定数量的分享图像进行非相干叠加即可提取秘密图像, 不需要额外掌握光学和密码学的知识, 其简单性让任何人都可以使用. 仿真实验和光学实验结果表明, 该系统可应用于实际, 并且具有良好的安全性.
    Recent years, with the rapid development of information technology, the information security has received more and more attention. A variety of encryption methods to protect the information have been reported. Visual cryptography is one of the encryption methods, which has highly security because of its threshold feature. And the cryptographic information can be explained by a naked eye in the decryption process. In the application of visual cryptography, however, each shared image is limited to transparency films and overlapping on computer. In our previous work, we proposed the scheme of invisible visual cryptography and developed the visual-cryptography-based optical hiding system (VCOH), which transformed the conventional visual cryptography shares into diffraction optical elements (DOEs). It not only increases the application range of visual cryptography, but also enhances security. In this paper, we propose an optical information hiding system based on the extended visual cryptography, which inherits the concept of invisible visual cryptography. In contrast to our previous work, the method proposed in this work can hide a meaningful image instead of text messages. Meanwhile, the capacity and imperceptibility of the method are greatly increased. The hiding process of the system contains two steps. Firstly, the secret image is converted into meaningful shares through the extended visual cryptography algorithm. Secondly, the meaningful shares are able to hide in phase-keys through an iterative phase retrieval algorithm, such as Gerchberg-Saxton algorithm and Yang-Gu iterative algorithm. Then the phase-keys can be made into diffraction optical elements (DOEs) to store and transport in a physical way. In the decryption process, DOEs are illuminated with the laser beam to reconstruct the meaningful shares. The secret image can be explained by the direct overlapping of the reconstructed shares without any optical or cryptographic knowledge. The simulation and optical experimental results show that the proposed method has good performance of security and validate the feasibility of the proposed method. Besides, in this paper the robustness and security issues are also analyzed. This system has a high security because of its indistinguishability under adaptive chosen ciphertext attack (IND-CCA2) security. Additionally, this system is relatively less robust than the VCOH because it shares meaningful images with highly complex and detailed structures.
      通信作者: 史祎诗, sysopt@126.com
    • 基金项目: 国家级-国家自然科学基金(61575197)
      Corresponding author: Shi Yi-Shi, sysopt@126.com
    [1]

    Khan M, Shah T 2014 3 D Res. 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 物理学报 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    Xu W H, Xu H F, Luo Y, Li T, Shi Y S 2016 Opt. Express 24 27922Google Scholar

    [12]

    姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平 2016 物理学报 65 214203Google Scholar

    Yao L L, Yuan C J, Qiang J J, Feng S T, Nie S P 2016 Acta Phys. Sin. 65 214203Google Scholar

    [13]

    Kong D Z, Shen X J, Cao L C, Jin G F 2017 Appl. Opt. 56 3449Google Scholar

    [14]

    Xu F H, Shulkind G, Thrampoulidis C, Shapiro J H, Torralba A, Wong F N C, Wornell Gr W 2018 Opt. Express 26 9945Google Scholar

    [15]

    Zhang L H, Yuan X, Zhang D W, Chen J 2018 Curr. Opt. Photon. 2 315

    [16]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [17]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 物理学报 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [18]

    Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar

    [19]

    Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar

    [20]

    Cimato S, Santis A D, Ferrara A L, Masucci B 2005 Inf. Process. Lett. 93 199Google Scholar

    [21]

    Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar

    [22]

    Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar

    [23]

    Lukac R, Plataniotis K N 2005 Pattern Recognit. 38 767Google Scholar

    [24]

    Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar

    [25]

    Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar

    [26]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [27]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [28]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [29]

    Mishra A, Gupta A 2018 J. Inf. and Optim. Sci. 39 631

    [30]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [31]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [32]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [33]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [34]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [35]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [36]

    Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Comput. Sci. 250 143Google Scholar

    [37]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [38]

    杨国桢, 顾本源 1981 物理学报 30 410Google Scholar

    Yang G Z, Gu B Y 1981 Acta Phys. Sin. 30 410Google Scholar

  • 图 1  增强型视觉密码光学隐藏系统: 提取过程

    Fig. 1.  EVC-based optical hiding system: The extraction process

    图 2  增强型视觉密码图像隐藏系统: 隐藏过程

    Fig. 2.  Extended-visual-cryptographic-based optical hiding system: The hiding process

    图 3  两幅分享图像(a), (b)和叠加后恢复出的秘密信息(c)

    Fig. 3.  Two shares (a), (b) are stacked together to recover the secret information (c)

    图 4  两个扩展后的子像素不同排序叠加示例, 灰度值为4/9和5/9的两个像素扩展后按图中方式排序叠加后灰度可以是4/9, 2/9和0/9

    Fig. 4.  Examples of subpixel arrangements. Arranging two subpixels with ${t_1} = {4 / 9}$ $ {t}_{1}=4/9 $ and ${t_2} = {5 / 9}$$ {t}_{2}=5/9 $ as the examples make ${t_T} = {4 / 9}$, ${t_T} = {2 / 9}$ and ${t_T} = {0 / 9}$

    图 5  图像隐藏过程中相位密钥生成算法例: GS算法流程示意图

    Fig. 5.  A example of phase-keys generation algorithms: GS algorithm flow diagram

    图 6  (a), (b)分享图像的掩饰图像; (c)秘密信息; (d), (e)编码后的分享图像; (f) (d), (e)叠加后的秘密信息; (g), (h)隐藏了分享图像的相位密钥; (i), (j)利用(g), (h)再现的分享图像; (k) (i), (j)非相干叠加后提取的秘密信息

    Fig. 6.  (a), (b) The original images of shares; (c) the secret image; (d), (e) the shares; (f) the secret images decrypted by stacked (d), (e) together; (g), (h) the phase keys; (i), (j) the reconstructed shares using (g), (h); (k) the recover secret images by stacking (i), (j) together

    图 7  图像隐藏系统提取实验光路图

    Fig. 7.  Optical setup for the extraction process of EVCOH

    图 8  (a), (b)分享图像; (c) (a), (b)叠加后的秘密信息; (d), (e)隐藏了分享图像的相位密钥; (f), (g) CCD相机采集到的再现后分享图像; (h)非相干叠加后的秘密信息

    Fig. 8.  (a), (b) The shares, (c) the secret images decrypted by stacked (a), (b) together; (d), (e) the phase keys; (f), (g) the reconstructed shares that were taken with a CCD camera; (h) the recover secret images by stacking (f), (g) together

    图 9  系统的噪声分析

    Fig. 9.  Noise analysis of EVCOH

    图 10  相位密钥台阶数为4时, 系统噪声分析

    Fig. 10.  Noise analysis of EVCOH when the phase keys are four steps

  • [1]

    Khan M, Shah T 2014 3 D Res. 5 29Google Scholar

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6 120Google Scholar

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57 327Google Scholar

    [4]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [5]

    Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542Google Scholar

    [6]

    杨玉花, 史祎诗, 王雅丽, 肖俊, 张静娟 2011 物理学报 60 034202Google Scholar

    Yang Y H, Shi Y S, Wang Y L, Xiao J, Zhang J J 2011 Acta Phys. Sin. 60 034202Google Scholar

    [7]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425Google Scholar

    [8]

    Gao Q H, Wang Y L, Li T, Shi Y S 2014 Appl. Optics 53 4700Google Scholar

    [9]

    刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201Google Scholar

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201Google Scholar

    [10]

    Chanana A, Paulsen A, Guruswamy S, Nahata A 2016 Optica 3 1466Google Scholar

    [11]

    Xu W H, Xu H F, Luo Y, Li T, Shi Y S 2016 Opt. Express 24 27922Google Scholar

    [12]

    姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平 2016 物理学报 65 214203Google Scholar

    Yao L L, Yuan C J, Qiang J J, Feng S T, Nie S P 2016 Acta Phys. Sin. 65 214203Google Scholar

    [13]

    Kong D Z, Shen X J, Cao L C, Jin G F 2017 Appl. Opt. 56 3449Google Scholar

    [14]

    Xu F H, Shulkind G, Thrampoulidis C, Shapiro J H, Torralba A, Wong F N C, Wornell Gr W 2018 Opt. Express 26 9945Google Scholar

    [15]

    Zhang L H, Yuan X, Zhang D W, Chen J 2018 Curr. Opt. Photon. 2 315

    [16]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [17]

    王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影 2019 物理学报 68 240503Google Scholar

    Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503Google Scholar

    [18]

    Naor M, Shamir M 1994 Lect. Notes Comput. Sci. 950 1Google Scholar

    [19]

    Blundo C, Bonis A D, Santis A D 2001 Designs Codes Cryptogr. 24 255Google Scholar

    [20]

    Cimato S, Santis A D, Ferrara A L, Masucci B 2005 Inf. Process. Lett. 93 199Google Scholar

    [21]

    Blundo C, Santis A D, Naor M 2000 Inf. Proc. Lett. 75 255Google Scholar

    [22]

    Lin C C, Tsai W H 2003 Pattern Recognit. Lett. 24 349Google Scholar

    [23]

    Lukac R, Plataniotis K N 2005 Pattern Recognit. 38 767Google Scholar

    [24]

    Hou Y C 2003 Pattern Recognit. 36 1619Google Scholar

    [25]

    Yamamoto H, Hayasaki Y, Nishida N 2004 Opt. Express 12 1258Google Scholar

    [26]

    Machizaud J, Fournel T 2012 Opt. Express 20 22847Google Scholar

    [27]

    Wu H C, Chang C C 2005 Comput. Stand. Interfaces 28 123Google Scholar

    [28]

    Feng J B, Wu H C, Tsai C S, Chang Y F, Chu Y P 2008 Pattern Recognit. 41 3572Google Scholar

    [29]

    Mishra A, Gupta A 2018 J. Inf. and Optim. Sci. 39 631

    [30]

    Blundo C, Cimato S, Santis A D 2006 Theor. Comput. Sci. 369 169Google Scholar

    [31]

    Chen Y F, Chan Y K, Huang C C, Tsai M H, Chu Y P 2007 Inf. Sci. 177 4696Google Scholar

    [32]

    Shi Y S, Yang X B 2017 J. Opt. 19 115703Google Scholar

    [33]

    Shi Y S, Yang X B 2017 Chin. Phys. Lett. 34 114204Google Scholar

    [34]

    Yang N, Gao Q K, Shi Y S 2018 Opt. Express 26 31995Google Scholar

    [35]

    Li Z F, Dong G Y, Yang D Y, Li G L, Shi Y S, Bi K, Zhou J 2019 Opt. Express 27 19212Google Scholar

    [36]

    Ateniese G, Blundo C, Santis A D, Stinson D R 2001 Theor. Comput. Sci. 250 143Google Scholar

    [37]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [38]

    杨国桢, 顾本源 1981 物理学报 30 410Google Scholar

    Yang G Z, Gu B Y 1981 Acta Phys. Sin. 30 410Google Scholar

  • [1] 刘睿泽, 祝玉鹏, 周新隆, 米沼锞, 吴承哲, 秦俏华, 柯常军, 史祎诗. 基于像素不扩展视觉密码的光学彩色脆弱水印. 物理学报, 2024, 73(13): 134202. doi: 10.7498/aps.73.20231652
    [2] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [3] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [4] 吴承哲, 刘睿泽, 史祎诗. 基于光学隐藏视觉密码的欺骗追踪系统. 物理学报, 2024, 73(14): 144201. doi: 10.7498/aps.73.20231721
    [5] 高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东. 基于相位梯度超构光栅的光学超构笼子. 物理学报, 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [6] 周新隆, 祝玉鹏, 杨栋宇, 张峻浩, 卢哲, 王华英, 董昭, 柯常军, 史祎诗. 基于视觉密码与QR码的光学脆弱水印. 物理学报, 2021, 70(24): 244201. doi: 10.7498/aps.70.20210964
    [7] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [8] 张旭苹, 张益昕, 王峰, 单媛媛, 孙振鉷, 胡燕祝. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707
    [9] 安雪碧, 银振强, 韩正甫. 光学体系宏观-微观纠缠及其在量子密钥分配中的应用. 物理学报, 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [10] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [11] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [12] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究. 物理学报, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [13] 范德胜, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇. 基于相移干涉术的光学信息隐藏系统的软件实现. 物理学报, 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [14] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [15] 史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟. 基于位相抽取的三维信息加密算法研究. 物理学报, 2011, 60(3): 034202. doi: 10.7498/aps.60.034202
    [16] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [17] 邓玉强, 王清月, 张志刚. 频率分辨光学开关法行迹相位还原的时频分析. 物理学报, 2006, 55(12): 6454-6458. doi: 10.7498/aps.55.6454
    [18] 徐则达, 刘焰发, 项 颖, 杨 杰, 游石基, 佘卫龙. 掺染料向列型液晶薄膜的光学相位共轭性质. 物理学报, 1999, 48(12): 2283-2288. doi: 10.7498/aps.48.2283
    [19] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题. 物理学报, 1981, 30(3): 410-413. doi: 10.7498/aps.30.410
    [20] 杨国桢, 顾本源. 用振幅-相位型全息透镜实现光学变换的一般理论. 物理学报, 1981, 30(3): 414-417. doi: 10.7498/aps.30.414
计量
  • 文章访问数:  7366
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-04
  • 修回日期:  2020-04-17
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回