搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列结构下的低频信号合成方法研究

崔岸婧 李道京 周凯 王宇 洪峻

引用本文:
Citation:

阵列结构下的低频信号合成方法研究

崔岸婧, 李道京, 周凯, 王宇, 洪峻

On method of composing low frequency signals based on array structures

Cui An-Jing, Li Dao-Jing, Zhou Kai, Wang Yv, Hong Jun
PDF
HTML
导出引用
  • 基于高频天线产生低频电磁波信号, 实现多波段信号对目标的照射, 不仅有可能减小低频天线尺寸, 而且可能成为提高雷达目标探测性能的一种途径. 本文将多普勒效应与阵列天线结构相结合, 基于对阵列中各辐射单元的信号时序、相位和间距等参数的控制, 提出了一种在目标区产生低频信号的方法. 本文给出了阵列参数的选择原则, 介绍了目标位于阵列方向和45°角扫描时的低频信号合成情况, 对存在辐射单元间距误差、相位误差、目标偏离预定位置以及等间隔稀疏条件下的合成信号性能进行了分析, 并采用峰值旁瓣比和积分旁瓣比来评价合成信号的性能. 将频率1 GHz载波信号合成为频率400 MHz信号的仿真分析结果, 表明了本文方法的有效性.
    Generating low-frequency electromagnetic waves based on high-frequency antenna and illuminating targets with multi-band signals can be an effect way that can not only reduce the physical dimension of a low frequency antenna, but also improve the performance of radar detection. Combining the electromagnetic wave doppler effect principle and the array antenna architecture, a method of generating a low-frequency signal around the illuminated target is proposed based on the controlling of array antenna parameters, including array radiation element signal timing, phase and element spacing. The principles of array parameter design are described. Composite signals are simulated respectively under two typical geometric relationships between targets and array antenna, target located along the array direction and in the direction of 45° scanning angle. The peak sidelobe ratio (PSLR) and integral sidelobe ratio (ISLR) are used to evaluate the quality of the composite signals. Aiming at practical applications, the effects of array element spacing error, phase error and target location error on the composite signal are simulated and analyzed. Under the condition of sparse uniform array, the influence of the radiation element spacing on the composite signal is analyzed. The simulation results show that the harmonic components of the composite signal increase with the radiating element spacing error and phase error growing.
      通信作者: 李道京, lidj@aircas.ac.cn
    • 基金项目: 中国科学院空天信息创新研究院(批准号: Y910340 Z2 F)资助的课题
      Corresponding author: Li Dao-Jing, lidj@aircas.ac.cn
    • Funds: Project supported by the Aerospace Information Research Institute, Chinese Academy of Sciences (Grant No.Y910340Z2F)
    [1]

    许道明, 张宏伟 2018 现代防御技术 46 148Google Scholar

    Xu D M, Zhang H W 2018 Modern Defence Technology 46 148Google Scholar

    [2]

    代红, 何丹 2016 电子信息对抗技术 31 40Google Scholar

    Dai H, He D 2016 Electronic Information Warfare Technology 31 40Google Scholar

    [3]

    周建卫, 李道京, 胡烜 2017 中国科学院大学学报 34 411Google Scholar

    Zhou J W, Li D J, Hu X 2017 J. Un. Chin. Ac. Sci. 34 411Google Scholar

    [4]

    周建卫, 李道京, 田鹤, 潘洁, 胡烜 2017 电子与信息学报 39 1058Google Scholar

    Zhou J W, Li D J, Tian H, Pan J, Hu X 2017 J. El. Inf. Tech. 39 1058Google Scholar

    [5]

    张仁李, 胡丽红, 盛卫星, 马晓峰, 韩玉兵 2016 电波科学学报 31 284Google Scholar

    Zhang R L, Hu L H, Sheng W X, Ma X F, Han Y B 2016 Chin. J. Rad. Sci. 31 284Google Scholar

    [6]

    Arazm F, Benson F A 1980 IEEE Trans. Electromag. Compat. EMC 22 142Google Scholar

    [7]

    顾继慧, 陈如山 2001 现代雷达 1 24Google Scholar

    Gu J H, Chen R S 2001 Mod. Radar. 1 24Google Scholar

    [8]

    张元仲 2016 物理与工程 26 3Google Scholar

    Zhang Y Z 2016 Physics and Engineering 26 3Google Scholar

    [9]

    Jearl Walker, David Halliday, Robert Resnick 2014 Fundamentals of Physics (United States of America: John Wiley) pp1135–1137

    [10]

    别业广 2003 物理与工程 4 62Google Scholar

    Bie Y G 2003 Physics and Engineering 4 62Google Scholar

    [11]

    高炳坤, 王凤林 2003 大学物理 8 15Google Scholar

    Gao B K, Wang F L 2003 College Physics 8 15Google Scholar

    [12]

    严欣达, 程先卿 1987 大学物理 11 25Google Scholar

    Yan X D, Cheng X Q 1987 College Physics 11 25Google Scholar

    [13]

    王景雪, 汤正新, 陈庆东, 尤景汉 2009 大学物理 28 24Google Scholar

    Wang J X, Tang Z X, Chen Q D, You J H 2009 College Physics 28 24Google Scholar

    [14]

    吴翊, 朱炬波, 易东云, 王正明 1997 中国空间科学技术 6 47

    Wu Y, Zhu J B, Yi D Y, Wang Z M 1997 Chin. Space. Sci. Technol. 6 47

    [15]

    房鹏 2009 硕士学位论文 (北京: 清华大学)

    Fang P 2009 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [16]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社) 第125−132页

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp125−132 (in Chinese)

    [17]

    魏钟铨 2001 合成孔径雷达卫星 (北京: 科学出版社) 第204−206页

    Wei Z Q 2001 Synthetic Aperture Radar Satellite (Beijing: Science Press) pp204−206 (in Chinese)

    [18]

    王建 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第8页

    Wang J 2015 Theory and Engineering Application of Array Antenna (Beijing: Publishing House of Electronics Industry) p8 (in Chinese)

    [19]

    左群声, 徐国良, 马林, 王等纯 等 译) 2006 雷达系统导论(北京: 电子工业出版社) 第429−452页

    Merrill I. Skolnik (translated by Zuo Q S, Xu G L, Ma L, Wang D C) 2006 Introduction to Radar System (Beijing: Publishing House of Electronics Industry) pp429−452 (in Chinese)[Merrill I. Skolnik

    [20]

    李道京, 侯颖妮, 滕秀敏, 李烈辰 2014 稀疏阵列天线雷达技术及其应用 (北京: 科学出版社) 第6−15页

    Li D J, Hou Y N, Teng X M, Li L C 2014 Sparse Array Antenna Radar Technology and Its Application (Beijing: Science Press) pp6−15 (in Chinese)

  • 图 1  雷达运动示意图

    Fig. 1.  Schematic diagram of the radar’s movement

    图 2  多普勒效应中的发射/接收信号波形与频谱 (a) 发射信号波形; (b) 接收信号波形; (c) 发射信号与接收信号频谱

    Fig. 2.  The emission/received signal waveform and spectrum of doppler effect: (a) The emission signal waveform; (b) the received signal waveform; (c) spectrum of the emission/received signal.

    图 3  空时坐标系中对运动雷达发射信号过程分解的示意图

    Fig. 3.  Schematic diagram of decomposition of moving radar in space-time coordinate system.

    图 4  阵列天线结构等效运动雷达的示意图

    Fig. 4.  Schematic diagram of the array antenna structure equivalent to the moving radar.

    图 5  目标在阵列方向时的阵列天线结构

    Fig. 5.  Array antenna structure when the target being in the array direction.

    图 6  辐射单元信号首尾相接时合成信号的波形与频谱 (a) 合成信号波形; (b)合成信号频谱

    Fig. 6.  Waveform and spectrum of the composite signal when signals of radiating elements being connected end to end: (a) Waveform of the composite signal; (b) spectrum of the composite signal.

    图 7  辐射单元发射信号相位调制频率81 MHz时合成信号的包络移动情况、波形与频谱 (a) 合成信号的包络移动情况; (b) 合成信号的波形; (c) 合成信号的频谱

    Fig. 7.  Envelope movement, waveform and spectrum of the composite signal when the phase modulation frequency of the radiating element signal being 81 MHz: (a) Envelope movement of the composite signal; (b) waveform of the composite signal; (c) spectrum of the composite signal.

    图 8  相位调制频率为81 MHz和39 MHz时辐射单元信号的频谱 (a) 相位调制频率为81 MHz时辐射单元信号的频谱; (b) 相位调制频率为39 MHz时辐射单元信号的频谱

    Fig. 8.  Spectrums of the radiating element signal when the phase modulation frequency being 81 MHz and 39 MHz: (a) Spectrum of the radiating element signal when the phase modulation frequency being 81 MHz; (b) spectrums of the radiating element signal when the phase modulation frequency being 39 MHz

    图 9  辐射单元发射信号相位调制频率39 MHz时合成信号的波形、频谱以及阵列发射信号与合成信号的频谱对比图 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 阵列发射信号与合成信号的频谱对比

    Fig. 9.  Waveform, spectrum of the composite signal and the spectrum comparison between the signal transmitted by the array and the composite signal when the phase modulation frequency of radiating element signals being 39 MHz: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) spectrum comparison between the signal transmitted by the array and the composite signal.

    图 10  波束扫描角为45°时的阵列结构

    Fig. 10.  Array structure when the beam scanning angle being 45°.

    图 11  波束扫描角为45°时合成信号的波形、频谱以及阵列发射信号与合成信号的频谱对比图 (a) 合成信号波形; (b) 合成信号频谱; (c) 阵列发射信号与合成信号的频谱对比

    Fig. 11.  Waveform and spectrum of the composite signal and the spectrum comparison between the signal transmitted by the array and the composite signal when the beam scanning angle being 45°: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) spectrum comparison between the signal transmitted by the array and the composite signal

    图 12  辐射单元间距误差和相位误差的分布直方图 (a)辐射单元间距误差的分布直方图; (b) 相位误差的分布直方图

    Fig. 12.  Distribution histogram of radiating element spacing error and phase error: (a) Distribution histogram of radiating element spacing; (b) distribution histogram of phase error.

    图 13  受到辐射单元间距误差和相位误差时合成信号的波形与频谱 (a) 合成信号的波形; (b) 合成信号的频谱

    Fig. 13.  Waveform and spectrum of the composite signal subjected to radiating element spacing error and phase error: (a) Waveform of the composite signal; (b) spectrum of the composite signal.

    图 14  实际目标距离阵列近端50 km时合成信号的波形、频谱与合成信号慢时间相位和低频信号相位的差值 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 合成信号慢时间相位和低频信号相位的差值

    Fig. 14.  Waveform, spectrum of the composite signal and slow time phase difference with that of low frequency signal when the actual target being 50 km from the near end of the array: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) slow time phase difference with that of low frequency signal.

    图 15  实际目标距离阵列近端10 km时合成信号的波形、频谱与合成信号慢时间相位和低频信号相位的差值 (a) 合成信号的波形; (b) 合成信号的频谱; (c) 合成信号慢时间相位和低频信号相位的差值

    Fig. 15.  Waveform, spectrum of the composite signal and slow time phase difference with that of low frequency signal when the actual target being 10 km from the near end of the array: (a) Waveform of the composite signal; (b) spectrum of the composite signal; (c) slow time phase difference with that of low frequency signal.

    图 16  等间隔稀疏阵列合成信号的波形与频谱 (a) 合成信号的波形; (b) 合成信号的频谱

    Fig. 16.  Waveform and spectrum of signals composited by equally spaced sparse array: (a) Waveform of the composite signal; (b) spectrum of the composite signal.

    表 1  波束扫描45°时合成信号的仿真参数

    Table 1.  Simulation parameters of the composite signal when beam scanning angle being 45°

    参数数据参数数据
    阵列长度105 m目标与阵列距离30 km
    辐射单元信号脉宽0.73 μs合成信号脉宽1.46 μs
    辐射单元信号频率1 GHz合成信号频率400 MHz
    辐射单元间距0.15 m辐射单元总数700
    相位调制频率39 MHz相位步进$ - \dfrac{{10}}{{13}}{\text{π}}$
    下载: 导出CSV

    表 2  目标偏离预定位置时合成信号的仿真结果

    Table 2.  Simulation results of the composite signal when the target deviating from the predetermined position.

    实际目标与阵列距离/km峰值旁瓣比/dB积分旁瓣比/dB
    50–23.3–14.92
    10–17.6–11.17
    下载: 导出CSV

    表 3  等间隔稀疏条件下合成信号的仿真参数

    Table 3.  Simulation parameters of the composite signal under the condition of equispaced sparsity.

    参数数据参数数据
    阵列长度105 m目标与阵列距离30 km
    辐射单元间距0.3 m辐射单元总数350
    辐射单元信号频率1 GHz合成信号频率400 MHz
    辐射单元信号脉宽0.73 μs合成信号脉宽1.46 μs
    相位调制频率39 MHz相位步进$ - \dfrac{{10}}{{13}}{\text{π}}$
    下载: 导出CSV
  • [1]

    许道明, 张宏伟 2018 现代防御技术 46 148Google Scholar

    Xu D M, Zhang H W 2018 Modern Defence Technology 46 148Google Scholar

    [2]

    代红, 何丹 2016 电子信息对抗技术 31 40Google Scholar

    Dai H, He D 2016 Electronic Information Warfare Technology 31 40Google Scholar

    [3]

    周建卫, 李道京, 胡烜 2017 中国科学院大学学报 34 411Google Scholar

    Zhou J W, Li D J, Hu X 2017 J. Un. Chin. Ac. Sci. 34 411Google Scholar

    [4]

    周建卫, 李道京, 田鹤, 潘洁, 胡烜 2017 电子与信息学报 39 1058Google Scholar

    Zhou J W, Li D J, Tian H, Pan J, Hu X 2017 J. El. Inf. Tech. 39 1058Google Scholar

    [5]

    张仁李, 胡丽红, 盛卫星, 马晓峰, 韩玉兵 2016 电波科学学报 31 284Google Scholar

    Zhang R L, Hu L H, Sheng W X, Ma X F, Han Y B 2016 Chin. J. Rad. Sci. 31 284Google Scholar

    [6]

    Arazm F, Benson F A 1980 IEEE Trans. Electromag. Compat. EMC 22 142Google Scholar

    [7]

    顾继慧, 陈如山 2001 现代雷达 1 24Google Scholar

    Gu J H, Chen R S 2001 Mod. Radar. 1 24Google Scholar

    [8]

    张元仲 2016 物理与工程 26 3Google Scholar

    Zhang Y Z 2016 Physics and Engineering 26 3Google Scholar

    [9]

    Jearl Walker, David Halliday, Robert Resnick 2014 Fundamentals of Physics (United States of America: John Wiley) pp1135–1137

    [10]

    别业广 2003 物理与工程 4 62Google Scholar

    Bie Y G 2003 Physics and Engineering 4 62Google Scholar

    [11]

    高炳坤, 王凤林 2003 大学物理 8 15Google Scholar

    Gao B K, Wang F L 2003 College Physics 8 15Google Scholar

    [12]

    严欣达, 程先卿 1987 大学物理 11 25Google Scholar

    Yan X D, Cheng X Q 1987 College Physics 11 25Google Scholar

    [13]

    王景雪, 汤正新, 陈庆东, 尤景汉 2009 大学物理 28 24Google Scholar

    Wang J X, Tang Z X, Chen Q D, You J H 2009 College Physics 28 24Google Scholar

    [14]

    吴翊, 朱炬波, 易东云, 王正明 1997 中国空间科学技术 6 47

    Wu Y, Zhu J B, Yi D Y, Wang Z M 1997 Chin. Space. Sci. Technol. 6 47

    [15]

    房鹏 2009 硕士学位论文 (北京: 清华大学)

    Fang P 2009 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [16]

    保铮, 邢孟道, 王彤 2005 雷达成像技术 (北京: 电子工业出版社) 第125−132页

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp125−132 (in Chinese)

    [17]

    魏钟铨 2001 合成孔径雷达卫星 (北京: 科学出版社) 第204−206页

    Wei Z Q 2001 Synthetic Aperture Radar Satellite (Beijing: Science Press) pp204−206 (in Chinese)

    [18]

    王建 2015 阵列天线理论与工程应用 (北京: 电子工业出版社) 第8页

    Wang J 2015 Theory and Engineering Application of Array Antenna (Beijing: Publishing House of Electronics Industry) p8 (in Chinese)

    [19]

    左群声, 徐国良, 马林, 王等纯 等 译) 2006 雷达系统导论(北京: 电子工业出版社) 第429−452页

    Merrill I. Skolnik (translated by Zuo Q S, Xu G L, Ma L, Wang D C) 2006 Introduction to Radar System (Beijing: Publishing House of Electronics Industry) pp429−452 (in Chinese)[Merrill I. Skolnik

    [20]

    李道京, 侯颖妮, 滕秀敏, 李烈辰 2014 稀疏阵列天线雷达技术及其应用 (北京: 科学出版社) 第6−15页

    Li D J, Hou Y N, Teng X M, Li L C 2014 Sparse Array Antenna Radar Technology and Its Application (Beijing: Science Press) pp6−15 (in Chinese)

  • [1] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [3] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [4] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [5] 谢前朋, 潘小义, 陈吉源, 肖顺平. 基于稀疏阵列的电磁矢量传感器多输入多输出雷达高分辨角度和极化参数联合估计. 物理学报, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [6] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [7] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法. 物理学报, 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [8] 周天益. 基于随机场照射的最优微波成像. 物理学报, 2019, 68(5): 055201. doi: 10.7498/aps.68.20182122
    [9] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [10] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [11] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [12] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [13] 周杰, 江浩, 菊池久和, 邵根富. 基于改进的统计信道模型与多天线系统性能分析. 物理学报, 2014, 63(14): 140506. doi: 10.7498/aps.63.140506
    [14] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [15] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法. 物理学报, 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [16] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [17] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [18] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [19] 张 宏, 方路平, 童勤业. 海豚等动物神经系统处理多普勒信号的一种可能性方案. 物理学报, 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
    [20] 左战春, 孙 江, 吴令安, 傅盘铭. 消多普勒三光子共振六波混频. 物理学报, 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
计量
  • 文章访问数:  5972
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-06-04
  • 上网日期:  2020-06-12
  • 刊出日期:  2020-10-05

/

返回文章
返回