搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的统计信道模型与多天线系统性能分析

周杰 江浩 菊池久和 邵根富

引用本文:
Citation:

基于改进的统计信道模型与多天线系统性能分析

周杰, 江浩, 菊池久和, 邵根富

Geometrical statistical channel model and performance investigation for multi-antenna systems in wireless communications

Zhou Jie, Jiang Hao, Hisakazu Kikuchi, Shao Gen-Fu
PDF
导出引用
  • 为提高电磁信号的到达角度以及多普勒效应等信道参数估计的准确性,在散射体非均匀分布下引入了散射概率和有效散射体两个物理概念,提出一种合理的改进型空间信道模型,该模型能准确地描述宏小区(macrocell)和微小区(microcell)等各种移动通信环境下的重要空时信道参数,并应用于多入多出系统(multiple input multiple output,MIMO)信道性能仿真中. 数值仿真结果与早期多径衰落信道模型对比,表明本模型的信道参数估计结果符合理论和经验,拓展了空间统计信道模型的研究和应用,对评估多天线MIMO 系统空时处理算法和仿真无线通信系统提供有力的工具.
    For testing an adaptive array algorithm in cellular communications, we develop a geometry based statistical channel model that provides the statistics of angle-of-arrival and doppler spectra of the multi-path components, into which introduced are the new concepts of effective scatterers and reflection probability. This channel model is suitable for describing the outdoor and indoor propagation environments, which is applied to the performance of multiple input multiple output (MIMO) system. A comparison between our theoretical calculations and customary results shows that the analysis is correct and applicable to microcell environments, which can promote the research of the statistical channel models and provide accurate and flexible channel models for the MIMO multi-antenna systems.
    • 基金项目: 国家自然科学基金(批准号:61372128)、科技部公益性行业专项(批准号:GYHY200906053)、江苏省科技支撑计划(工业)项目(批准号:BE2011195)和江苏省博士后基金(批准号:2011-11-010986678)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372128), Non-profit Industry Fund by Ministry of Science and Technology of China (Grant No. GYHY200906053), Scientific and Technological Support Project (Industry) of Jiangsu Province, China (Grant No. BE2011195) and Jiangsu Postdoctoral Foundation Fund, China (Grant No. 2011-11-010986678).
    [1]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [2]

    Petrus P, Reed J H 2002 IEEE Trans. Commun. 50 495

    [3]

    Olenko A Y, Wong K T 2005 IEEE Signal Proc. Lett. 12 516

    [4]

    Janaswamy R 2002 IEEE Trans. Commun. 1 488

    [5]

    Utschick G C 2013 IEEE J. Sel. Areas Commun. 31 149

    [6]

    Khan N M, Simsim M T, Ramer R 2006 International Symposium Wirel. Commun. Systems Valencia, Spain, Sept. 6-8, 2006

    [7]

    Kong S H 2009 IEEE Trans. Wirel. Commun. 8 2609

    [8]

    Jaafar I, Boujemaa H 2008 Proc. International Conf. on Signals, Circuits and Systems Monastir, Tunis, Nov. 7-9, 2008

    [9]

    Zhou J, Qiu L 2012 IET Commun. 6 2775

    [10]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [11]

    Jiang L, Tan S Y 2007 IEEE Trans Veh. Technol. 56 3587

    [12]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 物理学报 59 4738]

    [13]

    Le T, Cui Y F 2012 International Conf. Consumer Electronics Commun. and Networks Yichang, China, April 21-23 2012

    [14]

    Du J, Ren D M 2013 Chin. Phys. B 22 2

    [15]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [16]

    Nakabayashi H, Igarashi S 2012 IEEE 75th Trans Veh. Technol. Conf. Yokohama Japan, May 6-9, 2012

    [17]

    Zhong D, Li Z M 2012 IEEE Trans. Consumer Electrics 3646 2012

    [18]

    Li Z H, Luan F Y 2012 IEEE Wireless Commun. Network Conf. Shanghai, China, April 1-4, 2012

    [19]

    Wang H S, Zeng G H 2008 Chin. Phys. B 17 4451

    [20]

    Tsalolihin E, Bilik I, Blaunstein N 2011 Proc. of European Conf. Antennas and Propagation Rome, Italy, April 11-15 2011

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

  • [1]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [2]

    Petrus P, Reed J H 2002 IEEE Trans. Commun. 50 495

    [3]

    Olenko A Y, Wong K T 2005 IEEE Signal Proc. Lett. 12 516

    [4]

    Janaswamy R 2002 IEEE Trans. Commun. 1 488

    [5]

    Utschick G C 2013 IEEE J. Sel. Areas Commun. 31 149

    [6]

    Khan N M, Simsim M T, Ramer R 2006 International Symposium Wirel. Commun. Systems Valencia, Spain, Sept. 6-8, 2006

    [7]

    Kong S H 2009 IEEE Trans. Wirel. Commun. 8 2609

    [8]

    Jaafar I, Boujemaa H 2008 Proc. International Conf. on Signals, Circuits and Systems Monastir, Tunis, Nov. 7-9, 2008

    [9]

    Zhou J, Qiu L 2012 IET Commun. 6 2775

    [10]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [11]

    Jiang L, Tan S Y 2007 IEEE Trans Veh. Technol. 56 3587

    [12]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 物理学报 59 4738]

    [13]

    Le T, Cui Y F 2012 International Conf. Consumer Electronics Commun. and Networks Yichang, China, April 21-23 2012

    [14]

    Du J, Ren D M 2013 Chin. Phys. B 22 2

    [15]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [16]

    Nakabayashi H, Igarashi S 2012 IEEE 75th Trans Veh. Technol. Conf. Yokohama Japan, May 6-9, 2012

    [17]

    Zhong D, Li Z M 2012 IEEE Trans. Consumer Electrics 3646 2012

    [18]

    Li Z H, Luan F Y 2012 IEEE Wireless Commun. Network Conf. Shanghai, China, April 1-4, 2012

    [19]

    Wang H S, Zeng G H 2008 Chin. Phys. B 17 4451

    [20]

    Tsalolihin E, Bilik I, Blaunstein N 2011 Proc. of European Conf. Antennas and Propagation Rome, Italy, April 11-15 2011

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

计量
  • 文章访问数:  1616
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-14
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-07-05

基于改进的统计信道模型与多天线系统性能分析

  • 1. 南京信息工程大学, 气象探测与信息处理重点实验室, 南京 210044;
  • 2. 日本国立新泻大学, 工学部电气电子工学科, 新泻 950-2181;
  • 3. 杭州电子科技大学自动化学院, 杭州 310018
    基金项目: 

    国家自然科学基金(批准号:61372128)、科技部公益性行业专项(批准号:GYHY200906053)、江苏省科技支撑计划(工业)项目(批准号:BE2011195)和江苏省博士后基金(批准号:2011-11-010986678)资助的课题.

摘要: 为提高电磁信号的到达角度以及多普勒效应等信道参数估计的准确性,在散射体非均匀分布下引入了散射概率和有效散射体两个物理概念,提出一种合理的改进型空间信道模型,该模型能准确地描述宏小区(macrocell)和微小区(microcell)等各种移动通信环境下的重要空时信道参数,并应用于多入多出系统(multiple input multiple output,MIMO)信道性能仿真中. 数值仿真结果与早期多径衰落信道模型对比,表明本模型的信道参数估计结果符合理论和经验,拓展了空间统计信道模型的研究和应用,对评估多天线MIMO 系统空时处理算法和仿真无线通信系统提供有力的工具.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回