搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的统计信道模型与多天线系统性能分析

周杰 江浩 菊池久和 邵根富

引用本文:
Citation:

基于改进的统计信道模型与多天线系统性能分析

周杰, 江浩, 菊池久和, 邵根富

Geometrical statistical channel model and performance investigation for multi-antenna systems in wireless communications

Zhou Jie, Jiang Hao, Hisakazu Kikuchi, Shao Gen-Fu
PDF
导出引用
  • 为提高电磁信号的到达角度以及多普勒效应等信道参数估计的准确性,在散射体非均匀分布下引入了散射概率和有效散射体两个物理概念,提出一种合理的改进型空间信道模型,该模型能准确地描述宏小区(macrocell)和微小区(microcell)等各种移动通信环境下的重要空时信道参数,并应用于多入多出系统(multiple input multiple output,MIMO)信道性能仿真中. 数值仿真结果与早期多径衰落信道模型对比,表明本模型的信道参数估计结果符合理论和经验,拓展了空间统计信道模型的研究和应用,对评估多天线MIMO 系统空时处理算法和仿真无线通信系统提供有力的工具.
    For testing an adaptive array algorithm in cellular communications, we develop a geometry based statistical channel model that provides the statistics of angle-of-arrival and doppler spectra of the multi-path components, into which introduced are the new concepts of effective scatterers and reflection probability. This channel model is suitable for describing the outdoor and indoor propagation environments, which is applied to the performance of multiple input multiple output (MIMO) system. A comparison between our theoretical calculations and customary results shows that the analysis is correct and applicable to microcell environments, which can promote the research of the statistical channel models and provide accurate and flexible channel models for the MIMO multi-antenna systems.
    • 基金项目: 国家自然科学基金(批准号:61372128)、科技部公益性行业专项(批准号:GYHY200906053)、江苏省科技支撑计划(工业)项目(批准号:BE2011195)和江苏省博士后基金(批准号:2011-11-010986678)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372128), Non-profit Industry Fund by Ministry of Science and Technology of China (Grant No. GYHY200906053), Scientific and Technological Support Project (Industry) of Jiangsu Province, China (Grant No. BE2011195) and Jiangsu Postdoctoral Foundation Fund, China (Grant No. 2011-11-010986678).
    [1]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [2]

    Petrus P, Reed J H 2002 IEEE Trans. Commun. 50 495

    [3]

    Olenko A Y, Wong K T 2005 IEEE Signal Proc. Lett. 12 516

    [4]

    Janaswamy R 2002 IEEE Trans. Commun. 1 488

    [5]

    Utschick G C 2013 IEEE J. Sel. Areas Commun. 31 149

    [6]

    Khan N M, Simsim M T, Ramer R 2006 International Symposium Wirel. Commun. Systems Valencia, Spain, Sept. 6-8, 2006

    [7]

    Kong S H 2009 IEEE Trans. Wirel. Commun. 8 2609

    [8]

    Jaafar I, Boujemaa H 2008 Proc. International Conf. on Signals, Circuits and Systems Monastir, Tunis, Nov. 7-9, 2008

    [9]

    Zhou J, Qiu L 2012 IET Commun. 6 2775

    [10]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [11]

    Jiang L, Tan S Y 2007 IEEE Trans Veh. Technol. 56 3587

    [12]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 物理学报 59 4738]

    [13]

    Le T, Cui Y F 2012 International Conf. Consumer Electronics Commun. and Networks Yichang, China, April 21-23 2012

    [14]

    Du J, Ren D M 2013 Chin. Phys. B 22 2

    [15]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [16]

    Nakabayashi H, Igarashi S 2012 IEEE 75th Trans Veh. Technol. Conf. Yokohama Japan, May 6-9, 2012

    [17]

    Zhong D, Li Z M 2012 IEEE Trans. Consumer Electrics 3646 2012

    [18]

    Li Z H, Luan F Y 2012 IEEE Wireless Commun. Network Conf. Shanghai, China, April 1-4, 2012

    [19]

    Wang H S, Zeng G H 2008 Chin. Phys. B 17 4451

    [20]

    Tsalolihin E, Bilik I, Blaunstein N 2011 Proc. of European Conf. Antennas and Propagation Rome, Italy, April 11-15 2011

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

  • [1]

    Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829

    [2]

    Petrus P, Reed J H 2002 IEEE Trans. Commun. 50 495

    [3]

    Olenko A Y, Wong K T 2005 IEEE Signal Proc. Lett. 12 516

    [4]

    Janaswamy R 2002 IEEE Trans. Commun. 1 488

    [5]

    Utschick G C 2013 IEEE J. Sel. Areas Commun. 31 149

    [6]

    Khan N M, Simsim M T, Ramer R 2006 International Symposium Wirel. Commun. Systems Valencia, Spain, Sept. 6-8, 2006

    [7]

    Kong S H 2009 IEEE Trans. Wirel. Commun. 8 2609

    [8]

    Jaafar I, Boujemaa H 2008 Proc. International Conf. on Signals, Circuits and Systems Monastir, Tunis, Nov. 7-9, 2008

    [9]

    Zhou J, Qiu L 2012 IET Commun. 6 2775

    [10]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [11]

    Jiang L, Tan S Y 2007 IEEE Trans Veh. Technol. 56 3587

    [12]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 物理学报 59 4738]

    [13]

    Le T, Cui Y F 2012 International Conf. Consumer Electronics Commun. and Networks Yichang, China, April 21-23 2012

    [14]

    Du J, Ren D M 2013 Chin. Phys. B 22 2

    [15]

    Jiang H, Zhou J, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰, 菊池久和, 邵根富 2014 物理学报 63 048702]

    [16]

    Nakabayashi H, Igarashi S 2012 IEEE 75th Trans Veh. Technol. Conf. Yokohama Japan, May 6-9, 2012

    [17]

    Zhong D, Li Z M 2012 IEEE Trans. Consumer Electrics 3646 2012

    [18]

    Li Z H, Luan F Y 2012 IEEE Wireless Commun. Network Conf. Shanghai, China, April 1-4, 2012

    [19]

    Wang H S, Zeng G H 2008 Chin. Phys. B 17 4451

    [20]

    Tsalolihin E, Bilik I, Blaunstein N 2011 Proc. of European Conf. Antennas and Propagation Rome, Italy, April 11-15 2011

    [21]

    Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856

    [22]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 物理学报 58 6779]

  • [1] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [2] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [3] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [4] 崔岸婧, 李道京, 周凯, 王宇, 洪峻. 阵列结构下的低频信号合成方法研究. 物理学报, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [5] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [6] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计. 物理学报, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [7] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [8] 李威, 李骏, 龚志雄. 水下任意刚性散射体对Bessel波的散射特性分析. 物理学报, 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [9] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [10] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [11] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [12] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法. 物理学报, 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [13] 宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇. 四方晶系应变Si空穴散射机制. 物理学报, 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [14] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [15] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [16] 张 宏, 方路平, 童勤业. 海豚等动物神经系统处理多普勒信号的一种可能性方案. 物理学报, 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
    [17] 左战春, 孙 江, 吴令安, 傅盘铭. 消多普勒三光子共振六波混频. 物理学报, 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
    [18] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [19] 程传福, 亓东平, 刘德丽, 滕树云. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析. 物理学报, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [20] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势. 物理学报, 1966, 22(5): 569-579. doi: 10.7498/aps.22.569
计量
  • 文章访问数:  2255
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-14
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-07-05

基于改进的统计信道模型与多天线系统性能分析

  • 1. 南京信息工程大学, 气象探测与信息处理重点实验室, 南京 210044;
  • 2. 日本国立新泻大学, 工学部电气电子工学科, 新泻 950-2181;
  • 3. 杭州电子科技大学自动化学院, 杭州 310018
    基金项目: 国家自然科学基金(批准号:61372128)、科技部公益性行业专项(批准号:GYHY200906053)、江苏省科技支撑计划(工业)项目(批准号:BE2011195)和江苏省博士后基金(批准号:2011-11-010986678)资助的课题.

摘要: 为提高电磁信号的到达角度以及多普勒效应等信道参数估计的准确性,在散射体非均匀分布下引入了散射概率和有效散射体两个物理概念,提出一种合理的改进型空间信道模型,该模型能准确地描述宏小区(macrocell)和微小区(microcell)等各种移动通信环境下的重要空时信道参数,并应用于多入多出系统(multiple input multiple output,MIMO)信道性能仿真中. 数值仿真结果与早期多径衰落信道模型对比,表明本模型的信道参数估计结果符合理论和经验,拓展了空间统计信道模型的研究和应用,对评估多天线MIMO 系统空时处理算法和仿真无线通信系统提供有力的工具.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回