-
采用磁控溅射方法制备了Ge50Te50/Zn15Sb85纳米复合多层薄膜. 研究了薄膜的电阻随温度的变化以及薄膜的晶化激活能. 通过透射电子显微镜比较了晶化前后Ge50Te50/Zn15Sb85纳米复合多层薄膜的截面多层结构. 制备了基于[GT(7nm)/ZS(3nm)]5多层复合薄膜的相变存储器件, 并测试了其电性能. 研究表明, Ge50Te50/Zn15Sb85纳米复合多层薄膜具有较好的非晶态热稳定性和数据保持力, 其器件具有较快的转变速度、较低的操作功耗和较好的循环性能. Ge50Te50/Zn15Sb85纳米复合多层薄膜是一种潜在的高热稳定性和低功耗的相变存储材料.
-
关键词:
- Ge50Te50/Zn15Sb85薄膜 /
- 多层结构 /
- 热稳定性 /
- 相变存储器
The Ge50Te50/Zn15Sb85 nanocomposite multilayer films are prepared by the magnetron sputtering. The variation of resistance with temperature and with crystallization activation energy is studied. The multilayer structure of the section before and after the crystallization for Ge50Te50/Zn15Sb85 nanocomposite multilayer film is compared by transmission electron microscope. The phase change memory device based on [GT(7nm)/ZS(3nm)]5 is manufactured, and the electrical performance is measured. The fast switching speed, low operating power consumption, and good cycling performance are achieved for Ge50Te50/Zn15Sb85. Ge50Te50/Zn15Sb85, which is a kind of nanocomposite multilayer film, a promising phase change storage material with high thermal stability and low power consumption.[1] Slesazeck S, Mikolajick T 2019 Nanotechnology 30 352003Google Scholar
[2] Micoulaut M, Piarristeguy A, Flores-Ruiz H, Pradel A 2017 Phys. Rev. B 96 184204Google Scholar
[3] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F, Ma E 2019 Science 366 210Google Scholar
[4] Rao F, Ding K Y, Zhou Y X, Zheng Y H, Xia M J, Lv S L, Song Z T, Feng S L, Ronneberger I, Mazzarello R, Zhang W, Ma E 2017 Science 358 1423Google Scholar
[5] Wang Z R, Joshi S, Savelev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F, Yang J J 2017 Nat. Mater. 16 101Google Scholar
[6] Xu M, Li B, Xu K, Tong H, Cheng X, Xu M, Miao X 2019 Phys. Chem. Chem. Phys. 21 4494Google Scholar
[7] Guo T Q, Song S N, Zheng Y H, Xue Y, Yan S, Liu Y X, Li T, Liu G Y, Wang Y, Song Z T, Qi M, Feng S L 2018 Nanotechnology 29 505710Google Scholar
[8] Hu Y F, Qiu Q Q, Zhu X Q, Lai T S 2020 Appl. Surf. Sci. 505 144337Google Scholar
[9] Zheng L, Song W X, Song Z T, Song S N 2019 ACS Appl. Mater. Interfaces 11 45885Google Scholar
[10] Okabe K L, Sood A, Yalon E, Neumann C M, Asheghi M, Pop E, Goodson K E, Wong H S P 2019 J. Appl. Phys. 125 184501Google Scholar
[11] Lu Y G, Wang M, Song S N, Xia M J, Jia Y, Shen X, Wang G X, Dai S X, Song Z T 2016 Appl. Phys. Lett. 109 8181
[12] Zhou L J, Yang Z, Wang X J, Qian H, Xu M, Cheng X M, Tong H, Miao X S 2019 Adv. Electron. Mater. 5 1900781
[13] Li Z G, Lu Y G, Wang M, Shen X, Zhang X H, Song S N, Song Z T 2018 J. Non-Cryst. Solids. 481 110Google Scholar
[14] Wu W H, Chen S Y, Zhai J W, Liu X Y, Lai T S, Song S N, Song Z T 2017 Nanotechnology 28 405206Google Scholar
[15] Zhang J H, Hu Y F, Zhang R, Zou H, Xue J Z, Zhu X Q, Song S N, Song Z T 2019 Ecs J. Solid State Sc. 8 563
[16] Zhang R, Hu Y F, Chou Q Q, Lai T S, Zhu X Q 2019 J. Alloys Compd. 798 342Google Scholar
[17] He Z F, Chen S Y, Wu W H, Zhai J W, Song S N, Song Z T 2017 Appl. Phys. Express 10 055504Google Scholar
[18] Wang Y, Wang T B, Liu G Y, Guo T Q, Li T, Lv S L, Cheng Y, Song S N, Ren K, Song Z T 2019 Scr. Mater. 164 25Google Scholar
[19] Saxena N, Manivannan A 2020 J. Phys. D: Appl. Phys. 53 025103Google Scholar
[20] Cho J Y, Kim D, Park Y J, Yang T Y, Lee Y Y, Joo Y C 2015 Acta Mater. 94 143Google Scholar
[21] Feng X Y, Wen T, Zhai J W, Lai T S, Wang C Z, Song S N, Song Z T 2014 Appl. Surf. Sci. 316 286Google Scholar
[22] Hu Y F, You H P, Chou Q Q, Lai T S 2019 J. Phys. D: Appl. Phys. 52 415104Google Scholar
[23] Xue Y, Song S N, Yan S, Guo T Q, Song Z T, Feng S L 2018 Scr. Mater. 157 152Google Scholar
[24] Lu Y G, Song S N, Song Z T, Wu L C, He A D, Gong Y F, Rao F, Liu B 2012 Appl. Phys. Lett. 101 113104Google Scholar
-
图 3 [GT(7 nm)/ZS(3 nm)]5多层复合薄膜的截面高分辨透射电子显微镜图像(a)(b)和选取电子衍射图(c) (d) (a), (c) 非晶态; (b), (d) 晶态
Fig. 3. The high-resolution transmission electron microscopy images (a) (b) and selected area electron diffraction diagrams (c) (d) of section for [GT(7 nm)/ZS(3 nm)]5 multilayer composite film: (a), (c) Amorphous; (b), (d) crystalline.
-
[1] Slesazeck S, Mikolajick T 2019 Nanotechnology 30 352003Google Scholar
[2] Micoulaut M, Piarristeguy A, Flores-Ruiz H, Pradel A 2017 Phys. Rev. B 96 184204Google Scholar
[3] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F, Ma E 2019 Science 366 210Google Scholar
[4] Rao F, Ding K Y, Zhou Y X, Zheng Y H, Xia M J, Lv S L, Song Z T, Feng S L, Ronneberger I, Mazzarello R, Zhang W, Ma E 2017 Science 358 1423Google Scholar
[5] Wang Z R, Joshi S, Savelev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F, Yang J J 2017 Nat. Mater. 16 101Google Scholar
[6] Xu M, Li B, Xu K, Tong H, Cheng X, Xu M, Miao X 2019 Phys. Chem. Chem. Phys. 21 4494Google Scholar
[7] Guo T Q, Song S N, Zheng Y H, Xue Y, Yan S, Liu Y X, Li T, Liu G Y, Wang Y, Song Z T, Qi M, Feng S L 2018 Nanotechnology 29 505710Google Scholar
[8] Hu Y F, Qiu Q Q, Zhu X Q, Lai T S 2020 Appl. Surf. Sci. 505 144337Google Scholar
[9] Zheng L, Song W X, Song Z T, Song S N 2019 ACS Appl. Mater. Interfaces 11 45885Google Scholar
[10] Okabe K L, Sood A, Yalon E, Neumann C M, Asheghi M, Pop E, Goodson K E, Wong H S P 2019 J. Appl. Phys. 125 184501Google Scholar
[11] Lu Y G, Wang M, Song S N, Xia M J, Jia Y, Shen X, Wang G X, Dai S X, Song Z T 2016 Appl. Phys. Lett. 109 8181
[12] Zhou L J, Yang Z, Wang X J, Qian H, Xu M, Cheng X M, Tong H, Miao X S 2019 Adv. Electron. Mater. 5 1900781
[13] Li Z G, Lu Y G, Wang M, Shen X, Zhang X H, Song S N, Song Z T 2018 J. Non-Cryst. Solids. 481 110Google Scholar
[14] Wu W H, Chen S Y, Zhai J W, Liu X Y, Lai T S, Song S N, Song Z T 2017 Nanotechnology 28 405206Google Scholar
[15] Zhang J H, Hu Y F, Zhang R, Zou H, Xue J Z, Zhu X Q, Song S N, Song Z T 2019 Ecs J. Solid State Sc. 8 563
[16] Zhang R, Hu Y F, Chou Q Q, Lai T S, Zhu X Q 2019 J. Alloys Compd. 798 342Google Scholar
[17] He Z F, Chen S Y, Wu W H, Zhai J W, Song S N, Song Z T 2017 Appl. Phys. Express 10 055504Google Scholar
[18] Wang Y, Wang T B, Liu G Y, Guo T Q, Li T, Lv S L, Cheng Y, Song S N, Ren K, Song Z T 2019 Scr. Mater. 164 25Google Scholar
[19] Saxena N, Manivannan A 2020 J. Phys. D: Appl. Phys. 53 025103Google Scholar
[20] Cho J Y, Kim D, Park Y J, Yang T Y, Lee Y Y, Joo Y C 2015 Acta Mater. 94 143Google Scholar
[21] Feng X Y, Wen T, Zhai J W, Lai T S, Wang C Z, Song S N, Song Z T 2014 Appl. Surf. Sci. 316 286Google Scholar
[22] Hu Y F, You H P, Chou Q Q, Lai T S 2019 J. Phys. D: Appl. Phys. 52 415104Google Scholar
[23] Xue Y, Song S N, Yan S, Guo T Q, Song Z T, Feng S L 2018 Scr. Mater. 157 152Google Scholar
[24] Lu Y G, Song S N, Song Z T, Wu L C, He A D, Gong Y F, Rao F, Liu B 2012 Appl. Phys. Lett. 101 113104Google Scholar
计量
- 文章访问数: 6047
- PDF下载量: 77
- 被引次数: 0