搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程

陈撷宇 牟茂淋 苏春燕 陈少永 唐昌建

引用本文:
Citation:

HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程

陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建

Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A

Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian
PDF
HTML
导出引用
  • 利用MARS-F代码在HL-2A装置下模拟等离子体对共振磁扰动的线性响应过程, 研究了等离子体旋转频率对响应的影响. 研究发现, 扰动场在有理面上的屏蔽效应在旋转频率较大时随旋转增大而增强, 但在旋转频率较小时电阻导致的屏蔽效果最强处较有理面的偏移会影响这一规律; 扰动场在非有理面上的放大效应主要由芯部扭曲响应引起, 且同时与等离子体旋转频率和电阻密切相关.
    Resonant magnetic perturbation (RMP), generated by externally applied magnetic perturbation coils, is an important method of controlling plasma edge localized mode. Many experiments have shown that RMP can effectively mitigate/suppress edge localized mode, but its intrinsic physical mechanism is not completely clear. The response of plasma to RMP is the key to understanding the RMP physics. In the presence of RMP, the circumferential symmetry of the tokamak magnetic field will be broken, forming a new three-dimensional(3D) equilibrium, and this process is called the plasma response to RMP. Currently, the parameter range and control effect of RMPs to control edge localized mode on different devices are quite different, implying that the plasma response to RMPs has different response results in different parameter ranges on different devices. Therefore, it is necessary to study the RMP response characteristics of specific devices.In this work, the effect of the plasma rotation frequency on the linear response process of plasma to the resonant magnetic perturbations is investigated in the framework of MARS-F in the HL-2A configuration, and the physical reasons are analyzed in detail. It is found that the shielding and amplification effects in plasma response do not change linearly with plasma rotation frequency, since the plasma resistivity plays an important role. The shielding effect for the magnetic perturbation on the rational surface is enhanced with the increase of the rotation frequency in the high rotation frequency range. However, this rule no longer holds true in the low rotation frequency range due to the deviation of the strongest shielding position from the rational surface caused by the plasma resistivity. As for the amplification effect, the resistivity weakens the amplification effect of plasma response due to the dissipation of induced current. The variation trend of the amplification effect with the rotation frequency and resistivity is consistent with that of the core-kink response, which indicates that the amplification effect of the magnetic perturbation is mainly caused by the core-kink response.
      通信作者: 牟茂淋, mlmou@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905152, 11775154)和四川大学专职博士后研发基金(批准号: 2020SCU12068)资助的课题
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905152, 11775154) and the Post-doctoral Research and Development Fund of Sichuan University, China (Grant No. 2020SCU12068)
    [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008Google Scholar

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011Google Scholar

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004Google Scholar

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111Google Scholar

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513Google Scholar

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003Google Scholar

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105Google Scholar

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008Google Scholar

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005Google Scholar

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002Google Scholar

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015Google Scholar

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011Google Scholar

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007Google Scholar

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006Google Scholar

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368Google Scholar

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030Google Scholar

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015Google Scholar

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011Google Scholar

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502Google Scholar

  • 图 1  HL-2A最外闭合磁面(红线)和RMP线圈位置(蓝线)

    Fig. 1.  The location and size of the RMP coils in HL-2A shown on the poloidal plane together with the last closed flux surface.

    图 2  HL-2A等离子体平衡的径向剖面 (a)归一化密度; (b)安全因子; (c)归一化等离子体环向旋转; (d)归一化等离子体电阻率

    Fig. 2.  The radial profiles of the plasma equilibrium used in this study: (a) The normalized density; (b) the safety factor; (c) the plasma toroidal rotation, normalized to the Alfven frequency at the plasma centre; (d) the normalized plasma resistivity (vertical lines indicate the radial locations of rational surfaces for q = 2, 3, 4).

    图 3  奇宇称时(a)真空径向场与(b)总径向场的极向谱

    Fig. 3.  Comparison of the poloidal spectra in the full plasma region, between (a) The vacuum field and (b) the total field including the plasma response, for the odd parity of the coil current.

    图 4  奇宇称时等离子体径向位移的极向傅里叶分量幅值沿极向磁通的变化

    Fig. 4.  Radial profiles of poloidal harmonic of the computed plasma normal displacement triggered by the odd parity coils.

    图 5  理想等离子体响应($ {\eta }_{0}=0 $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Fig. 5.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in ideal plasma response $ ({\eta }_{0}=0) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 6  电阻等离子体响应($ {\eta }_{0}=1.7524\times {10}^{-8} $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Fig. 6.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in resistive plasma response $ ({\eta }_{0}=1.7524\times {10}^{-8}) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 7  不同电阻值下有理面上总径向场幅值随旋转频率的变化 (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. 图中绿色虚线代表真空场条件下对应分量在有理面上的幅值

    Fig. 7.  The amplitude of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field on the rational surfaces with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. The green dashed lines are the corresponding amplitude of the resonant poloidal Fourier harmonics produced by RMP coils on the rational surfaces.

    图 8  不同电阻值下总径向场的极向傅里叶分量最大值随旋转频率的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的最大值

    Fig. 8.  The maximal amplitude of the poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding maximal amplitude of the poloidal Fourier harmonics produced by RMP coils.

    图 9  不同电阻值下等离子体边缘剥离响应(peeling)和芯部扭曲响应(kink)随旋转频率的变化

    Fig. 9.  The computed amplitude of the core-kink (blue dashed lines) and the edge-peeling (red solid lines) components of the plasma response with varying plasma toroidal rotation frequency and resistivity.

  • [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008Google Scholar

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011Google Scholar

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004Google Scholar

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111Google Scholar

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513Google Scholar

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003Google Scholar

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105Google Scholar

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008Google Scholar

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005Google Scholar

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002Google Scholar

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015Google Scholar

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011Google Scholar

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007Google Scholar

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006Google Scholar

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368Google Scholar

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030Google Scholar

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015Google Scholar

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011Google Scholar

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502Google Scholar

  • [1] 孙有文, 仇志勇, 万宝年. 磁约束燃烧等离子体物理的现状与展望. 物理学报, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 金仡飞, 张洪明, 尹相辉, 吕波, Cheonho Bae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地. EAST上RMP驱动等离子体自发旋转物理机制的实验研究. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241357
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [6] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响. 物理学报, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [7] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [8] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [9] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [10] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟. 物理学报, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [11] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用. 物理学报, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [12] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [13] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [14] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [15] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
计量
  • 文章访问数:  5932
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-06-02
  • 上网日期:  2020-06-16
  • 刊出日期:  2020-10-05

/

返回文章
返回