搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于元胞自动机的气动光学光线追迹算法

雒亮 夏辉 刘俊圣 费家乐 谢文科

引用本文:
Citation:

基于元胞自动机的气动光学光线追迹算法

雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科

Cellular automata ray tracing in two-dimensional aero-optical flow fields

Luo Liang, Xia Hui, Liu Jun-Sheng, Fei Jia-Le, Xie Wen-Ke
PDF
HTML
导出引用
  • 对于含激波等大密度脉动结构气动光学流场, 沿着直线路径对折射率积分会带来较大的光程误差. 因此, 数值求解光线方程进行光线追迹是必要的. 与数值求解光线方程不同, 元胞自动机(cellular automata, CA)通过给定光线位置和方向变换规则来模拟光线在介质中传输路径. 本文基于已有的实验测量、数值仿真所获得的高超声速流场密度场数据, 分别采用数值求解光线方程法和CA光线追迹算法进行光线追迹, 进而得到光线出射流场后的光程差. 结果表明, CA算法对于二维气动光学流场中光线追迹的适用性, 且较数值求解光线方程方法具有更高的效率.
    For the supersonic flow field with large density fluctuation produced by the unsteady flow and turbulent large-scale structures, an effective method to obtain the beam path is to solve the ray equation. Then the optical path difference (OPD), Strehl ratio (SR), optical transmission function (OTF), etc. can be obtained to analyze the optical distortion, and the correction of aero optics effects can be realized to improve the optical system performance. Generally, when the refractive index distribution is arbitrary, the ray equation analytic solution is difficult to obtain. Cellular automata (CA) ray tracing algorithm is proposed in this paper for aero-optical calculation in the 2D discrete flow fields. Unlike numerically solving the ray equation (NSRE), the coordinate value and the offset angle are calculated according to the position and direction transformation rules in CA algorithm. The position transformation rule is used to obtain the end point of the beam vector and determine whether the offset angle needs calculating at each iteration, the direction transformation rule is to calculate the offset angles. Then the refractive index field is integrated along the beam path to obtain the optical path length (OPL). The OPD is calculated from OPL. In this paper, aero-optical calculation is based on two types of flow fields. The supersonic shear layer including supersonic mixing layer and boundary layer 2D density distribution is measured by the nano-tracer-based planar laser scattering (NPLS) technique. The supersonic flow field surrounding the optical dome is simulated based on detached-eddy simulation (DES).The OPDrms and program running time quantitatively verify the calculation accuracy and high efficiency of CA. The results show that for the 2D supersonic NPLS flow field and the 2D supersonic flow field surrounding the optical dome, the calculation accuracy of CA is approximately equal to NSRE. Moreover, we find that the program running time of NSRE is about four times that of the CA algorithm, so the efficiency of ray tracing is effectively improved. Thus, the CA algorithm provides a new scheme for aero-optical calculation in the 2D supersonic flow field. Meanwhile, it also provides a guideline for the research on the ray tracing in 3D discrete aero-optical flow field.
      通信作者: 谢文科, wenkexiedan@163.com
    • 基金项目: 装备预研领域基金(批准号: 6140415020311)、高能激光技术湖南省重点实验室开放基金(批准号: GNJGJS04)和湖南省光电惯性工程技术研究中心开放基金(批准号: HN-NUDT1908)资助的课题
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund, China (Grant No. 6140415020311), the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04), and the Hunan Engineering Research Center of Optoelectronic Inertial Technology, China (Grant No. HN-NUDT1908)
    [1]

    Gordeyev S, Jumper E 2010 Prog. Aerosp. Sci. 46 8

    [2]

    谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛 2019 物理学报 68 094202Google Scholar

    Xie W K, Liu J S, Fei J L, Zhou Q, Xia H, Chen X, Zhang P, Peng Y M, Yu T 2019 Acta Phys. Sin. 68 094202Google Scholar

    [3]

    Pond J E, Sutton G W 2006 J. Aircraft 43 3

    [4]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 27Google Scholar

    [5]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [6]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 3

    [7]

    Montagnino L 1968 J. Opt. Soc. Am. A 58 12

    [8]

    Chang X F, Wang T, Wan S Z, Yan J, Fu W X 2015 Optik 126 23

    [9]

    Xu L, Xue D T, Lv X Y 2018 Opt. Express 26 1Google Scholar

    [10]

    Tang L P, Tang L M , Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301

    [11]

    Chen Q, Wang Y 2015 Physica A 432 15

    [12]

    Sun G Q, Jin Z, Song L P, Chakraborty A, Li B L 2011 Ecol. Res. 26 2

    [13]

    Chen C K, Li J, Zhang D 2012 Physica A 391 7

    [14]

    Ahmadpour S S, Mosleh M 2018 J. Supercomput. 74 9

    [15]

    Qin Y, Feng M Y, Lu H C, Cottrell G W 2018 Int. J. Comput. Vision. 126 751Google Scholar

    [16]

    Zhang H, Wei J, Gao X L, Hu J 2019 Int. J. Mod. Phys. C 30 5

    [17]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [18]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China, Ser. G 52 12Google Scholar

    [19]

    Zhu J, Li X L, Tang H Q, Zhu K C 2017 Opt. Express 25 17Google Scholar

    [20]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2018 Opt. Commun. 436 1Google Scholar

    [21]

    Guo G M, Liu H 2017 Appl. Opt. 56 16Google Scholar

    [22]

    Ji B, Long Y, Long X P, Qian Z D, Zhou J J 2017 J. Hydrodyn. 29 1Google Scholar

    [23]

    Weghorst H, Hooper G, Greenberg D P 1984 Acm. T. Graphic. 3 1Google Scholar

    [24]

    Huang Y, Shi G D, Zhu K Y 2016 J. Quant. Spectrosc. Radiat. 176 24Google Scholar

    [25]

    Jiang H, Ren G, Zheng L, Cheng J X, Huang Z F 2014 Int. J. Mod. Phys. B 28 16

    [26]

    赵玉新 2008 博士学位论文(长沙: 国防科学技术大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    易仕和, 赵玉新, 田立丰, 何霖, 程忠宇 2009 空气动力学学报 27 114Google Scholar

    Yi S H, Zhao Y X, Tian L F, He L, Cheng Z Y 2009 Acta Aerodyn. Sin. 27 114Google Scholar

    [28]

    易仕和, 陈植, 何霖, 武宇, 田立丰 2014 实验流体力学 28 1Google Scholar

    Yi S H, Chen Z, He L, Wu Y, Tian L F 2014 J. Fluid. Mech. 28 1Google Scholar

    [29]

    Tian L F, Yi S H, Zhao Y X, He L, Chen Z Y 2009 Sci. China, Ser. G 52 9Google Scholar

    [30]

    Lyons D C, Peltier L J, Zajaczkowski F J, Paterson E G 2007 J. Fluids Eng.-Trans. ASME 131 11

    [31]

    Usta O, Korkut E 2018 Ocean Eng. 160 15Google Scholar

  • 图 1  NPLS获得的超声速剪切层图像 (a)混合层; (b)边界层

    Fig. 1.  The flow visualization results of supersonic shear layers obtained by NPLS: (a) Supersonic mixing layer; (b) supersonic boundary layer.

    图 2  光学头罩绕流流场密度场

    Fig. 2.  The density field distribution of supersonic flow field surrounding the optical dome obtained by DES.

    图 3  CA算法与NSER算法在混合层得的光线路径

    Fig. 3.  Beam paths obtained by CA and NSRE in mixing layer.

    图 4  CA算法与NSRE算法计算得到的OPD (a)混合层; (b)边界层; (c)含激波的超声速光学头罩二维剖面流场

    Fig. 4.  The OPD results calculated by CA and NSRE: (a) Supersonic mixing layer; (b) supersonic boundary layer; (c) supersonic flow field surrounding the optical dome.

    表 1  CA与NSRE算法计算混合层流场的程序执行时间

    Table 1.  The program running time of CA and NSRE in mixing layer.

    方法t1/st2/st3/st4/st5/sta/s
    CA2.0322.0412.1572.0852.0772.078
    NSRE8.4638.4708.5228.4918.5118.491
    下载: 导出CSV

    表 2  CA与NSRE算法计算边界层流场的程序执行时间

    Table 2.  The program running time of CA and NSRE in boundary layer.

    方法t1/st2/st3/st4/st5/sta/s
    CA1.9662.0021.9831.9641.9721.977
    NSRE7.2417.2507.1437.2507.2197.220
    下载: 导出CSV

    表 3  CA与NSRE算法计算高速绕流流场的程序执行时间

    Table 3.  The program running time of CA and NSRE in supersonic flow field surrounding the optical dome.

    方法t1/st2/st3/st4/st5/sta/s
    CA2.8312.8842.8272.8732.8402.851
    NSRE11.37511.52511.40111.38011.39711.416
    下载: 导出CSV
  • [1]

    Gordeyev S, Jumper E 2010 Prog. Aerosp. Sci. 46 8

    [2]

    谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛 2019 物理学报 68 094202Google Scholar

    Xie W K, Liu J S, Fei J L, Zhou Q, Xia H, Chen X, Zhang P, Peng Y M, Yu T 2019 Acta Phys. Sin. 68 094202Google Scholar

    [3]

    Pond J E, Sutton G W 2006 J. Aircraft 43 3

    [4]

    Ding H L, Yi S H, Zhu Y Z, He L 2017 Appl. Opt. 56 27Google Scholar

    [5]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

    [6]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 3

    [7]

    Montagnino L 1968 J. Opt. Soc. Am. A 58 12

    [8]

    Chang X F, Wang T, Wan S Z, Yan J, Fu W X 2015 Optik 126 23

    [9]

    Xu L, Xue D T, Lv X Y 2018 Opt. Express 26 1Google Scholar

    [10]

    Tang L P, Tang L M , Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301

    [11]

    Chen Q, Wang Y 2015 Physica A 432 15

    [12]

    Sun G Q, Jin Z, Song L P, Chakraborty A, Li B L 2011 Ecol. Res. 26 2

    [13]

    Chen C K, Li J, Zhang D 2012 Physica A 391 7

    [14]

    Ahmadpour S S, Mosleh M 2018 J. Supercomput. 74 9

    [15]

    Qin Y, Feng M Y, Lu H C, Cottrell G W 2018 Int. J. Comput. Vision. 126 751Google Scholar

    [16]

    Zhang H, Wei J, Gao X L, Hu J 2019 Int. J. Mod. Phys. C 30 5

    [17]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [18]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China, Ser. G 52 12Google Scholar

    [19]

    Zhu J, Li X L, Tang H Q, Zhu K C 2017 Opt. Express 25 17Google Scholar

    [20]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2018 Opt. Commun. 436 1Google Scholar

    [21]

    Guo G M, Liu H 2017 Appl. Opt. 56 16Google Scholar

    [22]

    Ji B, Long Y, Long X P, Qian Z D, Zhou J J 2017 J. Hydrodyn. 29 1Google Scholar

    [23]

    Weghorst H, Hooper G, Greenberg D P 1984 Acm. T. Graphic. 3 1Google Scholar

    [24]

    Huang Y, Shi G D, Zhu K Y 2016 J. Quant. Spectrosc. Radiat. 176 24Google Scholar

    [25]

    Jiang H, Ren G, Zheng L, Cheng J X, Huang Z F 2014 Int. J. Mod. Phys. B 28 16

    [26]

    赵玉新 2008 博士学位论文(长沙: 国防科学技术大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    易仕和, 赵玉新, 田立丰, 何霖, 程忠宇 2009 空气动力学学报 27 114Google Scholar

    Yi S H, Zhao Y X, Tian L F, He L, Cheng Z Y 2009 Acta Aerodyn. Sin. 27 114Google Scholar

    [28]

    易仕和, 陈植, 何霖, 武宇, 田立丰 2014 实验流体力学 28 1Google Scholar

    Yi S H, Chen Z, He L, Wu Y, Tian L F 2014 J. Fluid. Mech. 28 1Google Scholar

    [29]

    Tian L F, Yi S H, Zhao Y X, He L, Chen Z Y 2009 Sci. China, Ser. G 52 9Google Scholar

    [30]

    Lyons D C, Peltier L J, Zajaczkowski F J, Paterson E G 2007 J. Fluids Eng.-Trans. ASME 131 11

    [31]

    Usta O, Korkut E 2018 Ocean Eng. 160 15Google Scholar

  • [1] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [2] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力. 物理学报, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [3] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [5] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正. 物理学报, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [6] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [7] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [8] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究. 物理学报, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [9] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [10] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型. 物理学报, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [11] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [12] 李庆定, 董力耘, 戴世强. 公交车停靠诱发交通瓶颈的元胞自动机模拟. 物理学报, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [13] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析. 物理学报, 2009, 58(6): 3877-3886. doi: 10.7498/aps.58.3877
    [14] 吴海英, 张淳民, 赵葆常, 李英才. 改型Wollaston棱镜的光程差及其特性分析. 物理学报, 2009, 58(3): 1642-1647. doi: 10.7498/aps.58.1642
    [15] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  6620
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-06-16
  • 上网日期:  2020-06-17
  • 刊出日期:  2020-10-05

/

返回文章
返回