搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响

郭榕榕 林金海 刘莉莉 李世韦 王尘 林海军

引用本文:
Citation:

CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响

郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军

Effect of deep level defects on space charge distribution in CdZnTe crystals

Guo Rong- Rong, Lin Jin-Hai, Liu Li-Li, Li Shi-Wei, Wang Chen, Lin Hai-Jun
PDF
HTML
导出引用
  • CdZnTe晶体内的空间电荷积累效应是影响高通量脉冲型探测器性能的关键因素.为了探索CdZnTe晶体中深能级缺陷对空间电荷分布及器件性能的影响规律, 本文采用Silvaco TCAD软件仿真了CdZnTe晶体内包含位置为Ev + 0.86 eV, 浓度为1 × 1012 cm–3的深施主能级缺陷$ \rm Te_{Cd}^{++} $时, 其空间电荷分布及内电场分布特性. 仿真结果表明, 随着外加偏压的增加, Au/CdZnTe/Au的能带倾斜加剧, 使得晶体内深能级电离度不断增加, 空间电荷浓度增加, 电场分布死区减小, 从而有利于载流子收集. 此外, 保证CdZnTe晶体高阻的前提下, 降低深能级缺陷(Ev + 0.86 eV)浓度可使内电场死区减小. 深能级缺陷位置为Ev + 0.8 eV, 亦可以减少阴极附近的空间电荷浓度, 使得电场分布更加平坦, 死区减小, 从而有效地提升载流子的收集效率.
    CdZnTe recently emerged as a leading semiconductor crystal for fabricating room-temperature x- and gamma-ray imaging detectors, due to its excellent energy resolution and sensitivity. However, its wide deployment is hampered by the low availability of high-quality CdZnTe crystals. As-grown CdZnTe crystals generally encounter the problems arising from the impurities and defects, especially deep level defects. The presence of impurities and defects leads to severe charge trapping, which significantly affects detector performance. Especially for high counting rate imaging detector used in medical imaging and tomography, the accumulation of space charge at deep levels significantly deforms the electric field distribution and subsequently reduces the charge collection efficiency. Therefore, a considerable interest is focused on the investigation of the space charge accumulation effect in CdZnTe crystal, which is the key factor to improve the performance of high counting rate imaging detector. Thus, the goal of this work is to investigate the effects of deep level defects on space charge distribution and internal electric field in CdZnTe detector. In order to reveal the major problem therein, Silvaco TCAD technique is used to simulate the space charge and electric field distribution profile in CdZnTe detector with considering the typical deep level defects $ \rm Te_{Cd}^{++} $in CdZnTe crystals with activation energy of Ev + 0.86 eV and concentration of 1 × 1012 cm–3 at room temperature. The simulation results demonstrate that the Au/ CdZnTe /Au energy band tilts intensively with the increase of applied bias, which makes the deep level ionization fraction increase. The space charge concentration also increases in the crystal. Meanwhile, the dead layer of electric field distribution decreases, which is of benefit to the carrier collection of CdZnTe detector. In addition, under the premiseof the high resistivity of CdZnTe crystal, the reduction of deep level defect concentration located at Ev + 0.86 eV can narrow the internal dead layer moderately. The deep level defect located at Ev + 0.8 eV can also reduce the space charge concentration near the cathode, which flattens the electric field distribution with narrower dead layer, thus significantly improving the carrier collection efficiency of CdZnTe detector. These simulation results will provide meaningful theoretical guidance for further optimizing the CdZnTe crystal growth, device design and fabrication.
      通信作者: 郭榕榕, guorr2020@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51702271, 61904155)、福建省自然科学基金(批准号: 2020J05239)和福建省教育厅中青年教师教育科研项目(批准号: JAT170407)资助的课题
      Corresponding author: Guo Rong- Rong, guorr2020@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51702271, 61904155), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05239), and the Middle-Aged and Young Teachers Education , Scientific Research Program of the Education Department of Fujian Province, China (Grant No. JAT170407)
    [1]

    Czyz S A, Farsoni A T, Gadey H R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 945 162614Google Scholar

    [2]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [3]

    Guo Q, Beilicke M, Garson A, Kislat F, Fleming D, Krawczynski H 2012 Astropart. Phys. 41 63Google Scholar

    [4]

    Prokesch M, Soldner S A, Sundaram A G, Reed M D, Li H, Eger J F, Reiber J L, Shanor C L, Wray C L, Emerick A J, Peters A F, Jones C L 2016 IEEE Trans. Nucl. Sci. 63 1854Google Scholar

    [5]

    Chai L, Chen L, Yang C P, Zhou D D, Yang M M, Qu W W, Zhang G L, Hei D Q, Xu S P, Chen X J 2019 Nucl. Sci. Tech. 30 91Google Scholar

    [6]

    Jiang W, Chalich Y, Deen M J 2019 Sensors 19 5019Google Scholar

    [7]

    Iniewski K 2014 J. Instrum. 9 C11001Google Scholar

    [8]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [9]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [10]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [11]

    Bale D S, Szeles C 2008 Phys. Rev. B 77 035205Google Scholar

    [12]

    Soldner S A, Bale D S, Szeles C 2007 IEEE Trans. Nucl. Sci. 54 1723Google Scholar

    [13]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [14]

    Li Y, Zha G, Guo Y, Xi S, Xu L, Jie W 2020 Sensors 20 383Google Scholar

    [15]

    Bale D S, Soldner S A, Szeles C 2008 Appl. Phys. Lett. 92 082101.1Google Scholar

    [16]

    Camarda G S, Bolotnikov A E, Cui Y, Hossain A, Awadalla S A, Mackenzie J, Chen H, James R B 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii, USA, October 26 – November 3, 2007 p1798

    [17]

    Musiienko A, Grill R, Pekárek J, Belas E, Praus P, Pipek J, Dědič V, Elhadidy H 2017 Appl. Phys. Lett. 111 082103.1Google Scholar

    [18]

    Mahmood S A 2019 J. Appl. Phys. 125 214505Google Scholar

    [19]

    Thomas B, Veale M C, Wilson M D, Seller P, Schneider A, Iniewski K 2017 J. Instrum. 12 C12045Google Scholar

    [20]

    Maneuski D, Gostilo V, Owens A 2019 J. Phys. D: Appl. Phys. 53 015114Google Scholar

    [21]

    Das A, Duttagupta S P 2015 Radiat.Prot. Dosim. 167 443Google Scholar

    [22]

    Johannesson D, Nawaz M, Nee H P 2019 Mater. Sci. Forum. 963 670Google Scholar

    [23]

    唐龙谷 2014 半导体工艺和器件仿真软件Silvaco TCAD实用教程 (北京: 清华大学出版社) 第99页

    Tang L G 2014 Semiconductor Process and Device Simulation Software Silvaco TCAD Practical Tutorial (Beijing: Tsinghua University Press) p99 (in Chinese)

    [24]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204.1Google Scholar

    [25]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701.1Google Scholar

    [26]

    Simmons J G, Taylor G W 1971 Phys. Rev. B 4 502Google Scholar

  • 图 1  (a) Au/CdZnTe/Au器件结构示意图; (b) CdZnTe晶体内缺陷能级分布图

    Fig. 1.  (a) Schematic diagram of Au/CdZnTe/Au device structure; (b) distributions of defect energy levels in CdZnTe crystal.

    图 2  不同偏压下的Au/CdZnTe/Au器件仿真结果 (a) 载流子浓度分布; (b) 深施主的电离浓度分布; (c) 空间电荷浓度分布; (d) 内部电场强度分布变化规律

    Fig. 2.  Simulation results of Au/CdZnTe/Au device under different bias voltages: (a) Distribution of carrier concentration; (b) density of ionized deep donors; (c) distribution of space charge concentration; (d) distribution of internal electric field intensity.

    图 3  Au/CdZnTe/Au器件内能带和内部电场分布示意图 (a) 热平衡的Au/CdZnTe/Au能带结构图; (b) U > 0的Au/CdZnTe/Au能带结构图; (c) 内部电场分布示意图

    Fig. 3.  Energy-band diagram and internal electric field distribution in Au/CdZnTe/Au device: (a) Au/CdZnTe/Au energy-band diagram in thermal equilibrium; (b) Au/CdZnTe/Au energy-band diagram under U > 0; (c) schematic diagram of internal electric field distribution.

    图 4  100 V偏压下Au/CdZnTe/Au器件不同深施主浓度下的 (a) 空间电荷分布特性; (b) 内部电场分布特性

    Fig. 4.  Space charge distributions (a) and internal electric field distribution (b) of Au/CdZnTe/Au devices with different deep donor concentrations under bias of 100 V.

    图 5  100 V偏压下Au/CdZnTe/Au器件不同深施主位置下的 (a) 空间电荷分布特性; (b)内部电场分布特性

    Fig. 5.  Space charge distributions (a) and internal electric field distribution (b) of Au/CdZnTe/Au devices with different depths of deep donor under bias of 100 V.

    表 1  CdZnTe晶体的基本参数

    Table 1.  Basic parameters of CdZnTe crystals.

    介电常数300 K时禁带宽度/eV300 K时导带密度/cm–3300 K时价带密度/cm–3电子迁移率/ cm2·V–1·s–1空穴迁移率/cm2·V–1·s–1
    10.91.69.14 × 10175.19 × 10181000100
    下载: 导出CSV

    表 2  深施主能级的基本信息

    Table 2.  Basic information of deep donor energy levels.

    类型位置/eV浓度/cm–3电子俘获界面/cm2空穴俘获界面/cm2简并度
    Donor1Ev + 0.865 × 10123 × 10–143 × 10–152
    Donor2Ev + 0.861 × 10123 × 10–143 × 10–152
    Donor3Ev + 0.861 × 10133 × 10–143 × 10–152
    下载: 导出CSV

    表 3  不同深能级缺陷浓度下CdZnTe晶体的电阻率仿真结果

    Table 3.  The resistivity of CdZnTe crystals at different deep energy level concentrations via simulation.

    能级类型位置/eV浓度/cm–3电阻率/Ω·cm
    无深施主能级6.08 × 105
    Donor1Ev + 0.865 × 10111.50 × 1010
    Donor2Ev + 0.861 × 10126.66 × 109
    Donor3Ev + 0.861 × 10136.05 × 108
    下载: 导出CSV
  • [1]

    Czyz S A, Farsoni A T, Gadey H R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 945 162614Google Scholar

    [2]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [3]

    Guo Q, Beilicke M, Garson A, Kislat F, Fleming D, Krawczynski H 2012 Astropart. Phys. 41 63Google Scholar

    [4]

    Prokesch M, Soldner S A, Sundaram A G, Reed M D, Li H, Eger J F, Reiber J L, Shanor C L, Wray C L, Emerick A J, Peters A F, Jones C L 2016 IEEE Trans. Nucl. Sci. 63 1854Google Scholar

    [5]

    Chai L, Chen L, Yang C P, Zhou D D, Yang M M, Qu W W, Zhang G L, Hei D Q, Xu S P, Chen X J 2019 Nucl. Sci. Tech. 30 91Google Scholar

    [6]

    Jiang W, Chalich Y, Deen M J 2019 Sensors 19 5019Google Scholar

    [7]

    Iniewski K 2014 J. Instrum. 9 C11001Google Scholar

    [8]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [9]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [10]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [11]

    Bale D S, Szeles C 2008 Phys. Rev. B 77 035205Google Scholar

    [12]

    Soldner S A, Bale D S, Szeles C 2007 IEEE Trans. Nucl. Sci. 54 1723Google Scholar

    [13]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [14]

    Li Y, Zha G, Guo Y, Xi S, Xu L, Jie W 2020 Sensors 20 383Google Scholar

    [15]

    Bale D S, Soldner S A, Szeles C 2008 Appl. Phys. Lett. 92 082101.1Google Scholar

    [16]

    Camarda G S, Bolotnikov A E, Cui Y, Hossain A, Awadalla S A, Mackenzie J, Chen H, James R B 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii, USA, October 26 – November 3, 2007 p1798

    [17]

    Musiienko A, Grill R, Pekárek J, Belas E, Praus P, Pipek J, Dědič V, Elhadidy H 2017 Appl. Phys. Lett. 111 082103.1Google Scholar

    [18]

    Mahmood S A 2019 J. Appl. Phys. 125 214505Google Scholar

    [19]

    Thomas B, Veale M C, Wilson M D, Seller P, Schneider A, Iniewski K 2017 J. Instrum. 12 C12045Google Scholar

    [20]

    Maneuski D, Gostilo V, Owens A 2019 J. Phys. D: Appl. Phys. 53 015114Google Scholar

    [21]

    Das A, Duttagupta S P 2015 Radiat.Prot. Dosim. 167 443Google Scholar

    [22]

    Johannesson D, Nawaz M, Nee H P 2019 Mater. Sci. Forum. 963 670Google Scholar

    [23]

    唐龙谷 2014 半导体工艺和器件仿真软件Silvaco TCAD实用教程 (北京: 清华大学出版社) 第99页

    Tang L G 2014 Semiconductor Process and Device Simulation Software Silvaco TCAD Practical Tutorial (Beijing: Tsinghua University Press) p99 (in Chinese)

    [24]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204.1Google Scholar

    [25]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701.1Google Scholar

    [26]

    Simmons J G, Taylor G W 1971 Phys. Rev. B 4 502Google Scholar

  • [1] 王赫宇, 李忠磊, 杜伯学. 界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响. 物理学报, 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [2] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] 梁铭辉, 郑飞虎, 安振连, 张冶文. 基于Monte Carlo的热脉冲法数据分析. 物理学报, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [5] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [6] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [7] 李维勤, 张海波, 鲁君. 非聚焦电子束照射SiO2薄膜带电效应. 物理学报, 2012, 61(2): 027302. doi: 10.7498/aps.61.027302
    [8] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理. 物理学报, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [9] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [10] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [12] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [13] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [14] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [15] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [16] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [17] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制. 物理学报, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [18] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [19] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [20] 王引书, 孙萍, 丁硕, 罗旭辉, 李娜, 王若桢. 玻璃中CdSeS纳米晶体的生长及其性能. 物理学报, 2002, 51(12): 2892-2895. doi: 10.7498/aps.51.2892
计量
  • 文章访问数:  7311
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-07-14
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回