搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合中子星内强子-夸克退禁闭相变

龚武坤 郭文军

引用本文:
Citation:

混合中子星内强子-夸克退禁闭相变

龚武坤, 郭文军

Hadron-quark deconfinement phase transition in hybrid stars

Gong Wu-Kun, Guo Wen-Jun
PDF
HTML
导出引用
  • 高密度物质环境内可能存在多种相互竞争的粒子相. 利用包含ω2ρ2相互作用项的相对论平均场理论中FSUGold参数组描述强子相物质, 夸克质量密度相关的有效质量口袋模型描述夸克相物质, 再通过Gibbs相平衡条件构建强子-夸克混合相物质, 研究了处于β平衡的混合中子星性质. 计算口袋常数B对混合中子星性质的影响, 结果表明B对混合中子星内强子-夸克退禁闭相变始末点、粒子分布均有较大影响, 且相较于相变开始点, 相变结束点受B的影响会更加明显. 随着B的增大, 混合中子星物质状态方程变硬, 质量-半径关系曲线上升, 极限质量在1.3—1.4倍太阳质量(M)范围内, 半径在9—12 km之间. 此外, 还研究了吸引和排斥的Σ势对混合中子星性质的影响, 结果表明不同Σ势对混合中子星内的粒子种类影响较大, 且相较于Σ引力势, 混合中子星在Σ斥力势下拥有更大的极限质量. 计算得到吸引和排斥的Σ势下混合中子星的极限质量分别为1.38M和1.41M.
    Astronomical statistics shows that the mass of neutron star is of the order of the solar mass, but the radius is only about ten kilometers. Therefore, the neutron star is highly condensed and there may be a variety of competing material phases inside the compact star. Hadron-quark deconfinement phase transition that is poorly understood at high density can be studied by the matter properties of hybrid star. The hybrid star contains many kinds of material phases, which cannot be described uniformly by one theory. So, different material phases are described by different theories. The hadronic phase is described by the relativistic mean-field theory with parameter set FSUGold including ω2ρ2 interaction term, and the quark phase is described by an effective mass bag model in which the quark mass is density-dependent. The hadron-quark mixed phase is constructed by the Gibbs phase transition, and the properties of hybrid star in β equilibrium is studied in this model. It is found that the bag constant B has a great influence on the starting point and ending point of the hadron-quark deconfinement phase transition and the particle composition in the hybrid star. Comparing with the starting point of phase transition, the influence of B on the ending point of phase transition is very obvious. For the hybrid star, the equation of state of matter becomes stiffer at low density and softer at high density as B increases. The overall effect is that the slope of the mass-radius curve increases with B increasing. The calculated results show that the maximum mass of hybrid star is between 1.3 solar mass and 1.4 solar mass (M), and the radius is between 9 km and 12 km. In addition, the influence of attractive and repulsive Σ potential on the properties of hybrid stars are studied. The results show that the Σ potential has a great influence on the particle composition in the hybrid star. We also find that the repulsive Σ potential makes the hybrid star have a greater maximum mass then an attractive Σ potential. For the attractive Σ potential, the maximum mass of hybrid star is 1.38M, while for the repulsive Σ potential, the maximum mass of hybrid stars is 1.41M.
      通信作者: 郭文军, impgwj@126.com
      Corresponding author: Guo Wen-Jun, impgwj@126.com
    [1]

    Norsen T 2002 Phys. Rev. C 65 045805Google Scholar

    [2]

    Mintz B W, Fraga E S, Pagliara G, Schaffner-Bielich J 2010 Phys. Rev. D 81 123012Google Scholar

    [3]

    Mintz B W, Fraga E S, Schaffner-Bielich J, Pagliara G 2010 J. Phys. G Nucl. Part. Phys. 37 094066Google Scholar

    [4]

    Weissenborn S, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J 2011 Astrophys. J. 740 L14Google Scholar

    [5]

    Orsaria M, Rodrigues H, Weber F, Contrera G A 2013 Phys. Rev. D 87 023001Google Scholar

    [6]

    Schaffner-Bielich J, Dover C B, Gal A, Greiner C, Stöcker H 1993 Phys. Rev. Lett. 71 1328Google Scholar

    [7]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 1Google Scholar

    [8]

    Torres J R, Gulminelli F, Menezes D P 2017 Phys. Rev. C 95 025201Google Scholar

    [9]

    Sedrakian A 2019 Phys. Rev. D 99 043011Google Scholar

    [10]

    Wu C, Qian W L, Ma Y G, Yang J F 2013 Int. J. Mod. Phys. E 22 1350026Google Scholar

    [11]

    Lim Y, Kwak K, Hyun C H, Lee C H 2014 Phys. Rev. C 89 055804Google Scholar

    [12]

    Mallick R, Schramm S, Dexheimer V, Bhattacharyya A 2015 Mon. Not. R. Astron. Soc. 449 1347Google Scholar

    [13]

    Kolomeitsev E E, Maslov K A, Voskresensky D N 2018 Nucl. Phys. A 970 291Google Scholar

    [14]

    Kiziltan B, Kottas A, De Yoreo M, Thorsett S E 2013 Astrophys. J. 778 66Google Scholar

    [15]

    Glendenning N K 2000 Phys. Rev. Lett. 85 1150Google Scholar

    [16]

    Harko T, Cheng K S, Tang P S 2004 Astrophys. J. 608 945Google Scholar

    [17]

    Li A, Peng G X, Lombardo U 2009 Chin. Phys. C 33 61Google Scholar

    [18]

    Alaverdyan A G, Alaverdyan G B, Chiladze A O 2010 Int. J. Mod. Phys. D 19 1557Google Scholar

    [19]

    Bhattacharyya A, Mishustin I N, Greiner W 2010 J. Phys. G Nucl. Part. Phys. 37 025201Google Scholar

    [20]

    Chen S W, Gao L, Peng G X 2012 Chin. Phys. C 36 947Google Scholar

    [21]

    Orsaria M, Rodrigues H, Weber F, Contrera G A 2014 Phys. Rev. C 89 015806Google Scholar

    [22]

    陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊 2019 物理学报 68 180401Google Scholar

    Cheng J L, Wang H, Jia H Y, Ma Z W, Li Y H, Tan J 2019 Acta Phys. Sin. 68 180401Google Scholar

    [23]

    Wu F, Wu C 2020 Eur. Phys. J. A 56 20Google Scholar

    [24]

    Duez M D, Liu Y T, Shapiro S L, Stephens B C 2004 Phys. Rev. D 69 104030Google Scholar

    [25]

    Roark J, Dexheimer V 2018 Phys. Rev. C 98 055805Google Scholar

    [26]

    Zdunik J L 2002 Astron. Astrophys. 394 641Google Scholar

    [27]

    Vartanyan Y L, Grigoryan A K, Sargsyan T R 2004 Astrophysics 47 189Google Scholar

    [28]

    Wu C, Su R K 2009 J. Phys. G Nucl. Part. Phys. 36 095101Google Scholar

    [29]

    Liu Y X, Gao D F, Guo H 2001 Nucl. Phys. A 695 353Google Scholar

    [30]

    Zhou E P, Zhou X, Li A 2018 Phys. Rev. D 97 083015Google Scholar

    [31]

    Li Z H, Schulze H J 2012 Phys. Rev. C 85 064002Google Scholar

    [32]

    Kohno M 2013 Phys. Rev. C 88 064005Google Scholar

    [33]

    Fukukawa K, Baldo M, Burgio G F, Lo Monaco L, Schulze H J 2015 Phys. Rev. C 92 065802Google Scholar

    [34]

    Hebeler K, Bogner S K, Furnstahl R J, Nogga A, Schwenk A 2011 Phys. Rev. C 83 031301Google Scholar

    [35]

    Coraggio L, Holt J W, Itaco N, Machleidt R, Marcucci L E, Sammarruca F 2014 Phys. Rev. C 89 044321Google Scholar

    [36]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93 054314Google Scholar

    [37]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G Nucl. Part. Phys. 39 085107Google Scholar

    [38]

    高朋林, 郑皓, 孙光爱 2019 物理学报 68 181102Google Scholar

    Gao P L, Zheng H, Sun G A 2019 Acta Phys. Sin. 68 181102Google Scholar

    [39]

    Menezes D P, Providência C 2003 Phys. Rev. C 68 035804Google Scholar

    [40]

    Bao T, Liu G Z, Zhu M F 2009 Chin. Phys. C 33 340Google Scholar

    [41]

    Bao T, Li G Q, Wang Z C, Yang X Q, Liu G Z 2011 Chin. Phys. C 35 539Google Scholar

    [42]

    Baldo M, Burgio G F, Castorina P, Plumari S, Zappalà D 2007 Phys. Rev. C 75 035804Google Scholar

    [43]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [44]

    Wu C, Ren Z Z 2011 Phys. Rev. C 83 025805Google Scholar

    [45]

    Glendenning N K 1982 Phys. Lett. B 114 392Google Scholar

    [46]

    Todd-Rutel B G, Piekarewicz J 2005 Phys. Rev. Lett. 95 122501Google Scholar

    [47]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 38 2700Google Scholar

    [48]

    Schaffner-Bielich J, Gal A 2000 Phys. Rev. C 62 034311Google Scholar

    [49]

    Schaffner-Bielich J, Dover C B, Gal A, Greiner C, Millener D J, Stöcker H 1994 Ann. Phys. (N.Y). 235 35Google Scholar

    [50]

    Schertler K, Greiner C, Thoma M H 1997 J. Phys. G Nucl. Part. Phys. 23 2051Google Scholar

    [51]

    Schertler K, Greiner C, Schaffner-Bielich J, Thoma M H 2000 Nucl. Phys. A 677 463Google Scholar

    [52]

    Bao T, Liu G Z, Zhao E G, Zhu M F 2008 Eur. Phys. J. A 38 287Google Scholar

  • 图 1  强子相(划线)、混合相(实线)、夸克相(点线)中, 每核子能量与物质密度的关系(a)以及压强与物质密度的关系(b), 取$ {{B}}^{{1/4}} $ = 195 MeV, $U_\varSigma^{(N)} $ = –30 MeV

    Fig. 1.  Relationships of each nucleon (a) and pressure (b) with matter density in hadron phase (dashed line), mixed phase (solid line) and quark phase (dotted line), respectively, with $ {{B}}^{{1/4}} $ = 195 MeV, $U_\varSigma^{(N)} $ = –30 MeV.

    图 2  $U_\varSigma^{(N)} $ = –30 MeV下$ {{B}}^{{1/4}} $ = 185 MeV (实线)、190 MeV (划线)、195 MeV (点线)时夸克相在混合星内的占比χ

    Fig. 2.  Proportion of quark phase χ in hybrid stars when $ {{B}}^{{1/4}} $ taking 185 MeV (solid line), 190 MeV (dashed line) and 195 MeV (dotted line), respectively, with $U_\varSigma^{(N)} $ = –30 MeV.

    图 3  混合星粒子分布图($ {{B}}^{{1/4}} $分别取185, 190, 195 MeV) (a), (b), (c) $U_\varSigma^{(N)} $ = 30 MeV; (d), (e), (f) $U_\varSigma^{(N)} $ = –30 MeV

    Fig. 3.  Particle composition in the hybrid star: (a), (b), (c) $U_\varSigma^{(N)} $ = 30 MeV; (d), (e), (f) $U_\varSigma^{(N)} $ = –30 MeV. $ {{B}}^{{1/4}} $ taking 185, 190, and 195 MeV.

    图 4  $U_\varSigma^{(N)} $ = –30 MeV下$ {{B}}^{{1/4}} $ = 185 MeV (实线)、190 MeV (划线)、195 MeV (点线)时的EOS曲线

    Fig. 4.  EOS when $ {{B}}^{{1/4}} $ taking 185 MeV (solid line), 190 MeV (dashed line) and 195 MeV (dotted line), respectively, with $U_\varSigma^{(N)} $ = –30 MeV.

    图 5  不同口袋常数下, 混合星质量-半径关系 (a)和质量-能量密度关系(b)

    Fig. 5.  Mass-radius (a) and mass-energy density (b) curves of hybrid stars, respectively, with different bag constant.

    图 6  $ {{B}}^{{1/4}} $ = 195 MeV下混合星内夸克相比份χ分布, 其中实线表示$U_\varSigma^{(N)} $ = –30 MeV的情况; 虚线表示$U_\varSigma^{(N)} $ = 30 MeV的情况

    Fig. 6.  Proportion of quark phase χ in hybrid stars when $U_\varSigma^{(N)} $ taking –30 MeV (solid line) and 30 MeV (dashed line) at $ {{B}}^{{1/4}} $ = 195 MeV, respectively.

    图 7  $ {{B}}^{{1/4}} $ = 195 MeV下混合星的质量-半径关系(a)和质量-能量密度关系(b), 其中实线表示$U_\varSigma^{(N)} $ = –30 MeV, 虚线表示$U_\varSigma^{(N)} $ = 30 MeV

    Fig. 7.  Mass-radius (a) and mass-energy density (b) curves of hybrid stars, respectively, with $U_\varSigma^{(N)} $ taking –30 MeV (solid line) and 30 MeV (dashed line) at $ {{B}}^{{1/4}} $ = 195 MeV.

  • [1]

    Norsen T 2002 Phys. Rev. C 65 045805Google Scholar

    [2]

    Mintz B W, Fraga E S, Pagliara G, Schaffner-Bielich J 2010 Phys. Rev. D 81 123012Google Scholar

    [3]

    Mintz B W, Fraga E S, Schaffner-Bielich J, Pagliara G 2010 J. Phys. G Nucl. Part. Phys. 37 094066Google Scholar

    [4]

    Weissenborn S, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J 2011 Astrophys. J. 740 L14Google Scholar

    [5]

    Orsaria M, Rodrigues H, Weber F, Contrera G A 2013 Phys. Rev. D 87 023001Google Scholar

    [6]

    Schaffner-Bielich J, Dover C B, Gal A, Greiner C, Stöcker H 1993 Phys. Rev. Lett. 71 1328Google Scholar

    [7]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 1Google Scholar

    [8]

    Torres J R, Gulminelli F, Menezes D P 2017 Phys. Rev. C 95 025201Google Scholar

    [9]

    Sedrakian A 2019 Phys. Rev. D 99 043011Google Scholar

    [10]

    Wu C, Qian W L, Ma Y G, Yang J F 2013 Int. J. Mod. Phys. E 22 1350026Google Scholar

    [11]

    Lim Y, Kwak K, Hyun C H, Lee C H 2014 Phys. Rev. C 89 055804Google Scholar

    [12]

    Mallick R, Schramm S, Dexheimer V, Bhattacharyya A 2015 Mon. Not. R. Astron. Soc. 449 1347Google Scholar

    [13]

    Kolomeitsev E E, Maslov K A, Voskresensky D N 2018 Nucl. Phys. A 970 291Google Scholar

    [14]

    Kiziltan B, Kottas A, De Yoreo M, Thorsett S E 2013 Astrophys. J. 778 66Google Scholar

    [15]

    Glendenning N K 2000 Phys. Rev. Lett. 85 1150Google Scholar

    [16]

    Harko T, Cheng K S, Tang P S 2004 Astrophys. J. 608 945Google Scholar

    [17]

    Li A, Peng G X, Lombardo U 2009 Chin. Phys. C 33 61Google Scholar

    [18]

    Alaverdyan A G, Alaverdyan G B, Chiladze A O 2010 Int. J. Mod. Phys. D 19 1557Google Scholar

    [19]

    Bhattacharyya A, Mishustin I N, Greiner W 2010 J. Phys. G Nucl. Part. Phys. 37 025201Google Scholar

    [20]

    Chen S W, Gao L, Peng G X 2012 Chin. Phys. C 36 947Google Scholar

    [21]

    Orsaria M, Rodrigues H, Weber F, Contrera G A 2014 Phys. Rev. C 89 015806Google Scholar

    [22]

    陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊 2019 物理学报 68 180401Google Scholar

    Cheng J L, Wang H, Jia H Y, Ma Z W, Li Y H, Tan J 2019 Acta Phys. Sin. 68 180401Google Scholar

    [23]

    Wu F, Wu C 2020 Eur. Phys. J. A 56 20Google Scholar

    [24]

    Duez M D, Liu Y T, Shapiro S L, Stephens B C 2004 Phys. Rev. D 69 104030Google Scholar

    [25]

    Roark J, Dexheimer V 2018 Phys. Rev. C 98 055805Google Scholar

    [26]

    Zdunik J L 2002 Astron. Astrophys. 394 641Google Scholar

    [27]

    Vartanyan Y L, Grigoryan A K, Sargsyan T R 2004 Astrophysics 47 189Google Scholar

    [28]

    Wu C, Su R K 2009 J. Phys. G Nucl. Part. Phys. 36 095101Google Scholar

    [29]

    Liu Y X, Gao D F, Guo H 2001 Nucl. Phys. A 695 353Google Scholar

    [30]

    Zhou E P, Zhou X, Li A 2018 Phys. Rev. D 97 083015Google Scholar

    [31]

    Li Z H, Schulze H J 2012 Phys. Rev. C 85 064002Google Scholar

    [32]

    Kohno M 2013 Phys. Rev. C 88 064005Google Scholar

    [33]

    Fukukawa K, Baldo M, Burgio G F, Lo Monaco L, Schulze H J 2015 Phys. Rev. C 92 065802Google Scholar

    [34]

    Hebeler K, Bogner S K, Furnstahl R J, Nogga A, Schwenk A 2011 Phys. Rev. C 83 031301Google Scholar

    [35]

    Coraggio L, Holt J W, Itaco N, Machleidt R, Marcucci L E, Sammarruca F 2014 Phys. Rev. C 89 044321Google Scholar

    [36]

    Drischler C, Hebeler K, Schwenk A 2016 Phys. Rev. C 93 054314Google Scholar

    [37]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G Nucl. Part. Phys. 39 085107Google Scholar

    [38]

    高朋林, 郑皓, 孙光爱 2019 物理学报 68 181102Google Scholar

    Gao P L, Zheng H, Sun G A 2019 Acta Phys. Sin. 68 181102Google Scholar

    [39]

    Menezes D P, Providência C 2003 Phys. Rev. C 68 035804Google Scholar

    [40]

    Bao T, Liu G Z, Zhu M F 2009 Chin. Phys. C 33 340Google Scholar

    [41]

    Bao T, Li G Q, Wang Z C, Yang X Q, Liu G Z 2011 Chin. Phys. C 35 539Google Scholar

    [42]

    Baldo M, Burgio G F, Castorina P, Plumari S, Zappalà D 2007 Phys. Rev. C 75 035804Google Scholar

    [43]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [44]

    Wu C, Ren Z Z 2011 Phys. Rev. C 83 025805Google Scholar

    [45]

    Glendenning N K 1982 Phys. Lett. B 114 392Google Scholar

    [46]

    Todd-Rutel B G, Piekarewicz J 2005 Phys. Rev. Lett. 95 122501Google Scholar

    [47]

    Millener D J, Dover C B, Gal A 1988 Phys. Rev. C 38 2700Google Scholar

    [48]

    Schaffner-Bielich J, Gal A 2000 Phys. Rev. C 62 034311Google Scholar

    [49]

    Schaffner-Bielich J, Dover C B, Gal A, Greiner C, Millener D J, Stöcker H 1994 Ann. Phys. (N.Y). 235 35Google Scholar

    [50]

    Schertler K, Greiner C, Thoma M H 1997 J. Phys. G Nucl. Part. Phys. 23 2051Google Scholar

    [51]

    Schertler K, Greiner C, Schaffner-Bielich J, Thoma M H 2000 Nucl. Phys. A 677 463Google Scholar

    [52]

    Bao T, Liu G Z, Zhao E G, Zhu M F 2008 Eur. Phys. J. A 38 287Google Scholar

  • [1] 温静, 孙帅, 曹李刚, 张丰收. 双Λ超核同位旋标量巨共振性质的相对论研究. 物理学报, 2024, 73(4): 042101. doi: 10.7498/aps.73.20231531
    [2] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [3] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [4] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [5] 袁颖. 利用超相对论量子分子动力学模型研究交变梯度同步加速器能区Au+Au碰撞中的核阻止效应. 物理学报, 2013, 62(22): 222402. doi: 10.7498/aps.62.222402
    [6] 王刚, 方向正, 郭建友. 相对论平均场理论对Pt同位素形状演化的研究. 物理学报, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [7] 邢永忠, 王艳艳, 朱玉兰, 郑玉明. 高密核物质中核子的运动对于K介子的等效质量和能量的影响. 物理学报, 2011, 60(1): 012501. doi: 10.7498/aps.60.012501
    [8] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究. 物理学报, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [9] 董建敏, 李君清, 苏昕宁, 王艳召, 张鸿飞, 左维. 致密天体中电子气体对原子核结构的影响. 物理学报, 2009, 58(4): 2294-2299. doi: 10.7498/aps.58.2294
    [10] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究. 物理学报, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [11] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [12] 丁斌刚, 鲁定辉, 张大立. 用相对论平均场理论研究近滴线区原子核传统幻数的消失和新幻数的产生. 物理学报, 2007, 56(12): 6905-6910. doi: 10.7498/aps.56.6905
    [13] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量. 物理学报, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [14] 荣 健, 马中玉. 200MeV以下质子-核散射的相对论微观描述. 物理学报, 2005, 54(4): 1528-1537. doi: 10.7498/aps.54.1528
    [15] 曹李刚, 刘玲, 陈宝秋, 马中玉. 稳定和不稳定核巨共振性质的相对论研究. 物理学报, 2001, 50(4): 638-643. doi: 10.7498/aps.50.638
    [16] 贺泽君, 蒋维渊, 朱志远, 刘 波. 夸克-胶子等离子体在相对论性核-核碰撞中形成的一种信号. 物理学报, 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [17] 刘录新. 相对论热力学向量理论对Schwarzschild场中物质系统特性的研究. 物理学报, 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [18] 曹福广, 杨善德. 具有Gogny等效核力的有限核物质的饱和性质与液气相变. 物理学报, 1993, 42(11): 1747-1755. doi: 10.7498/aps.42.1747
    [19] 朱萍, 徐加豹, 高琴. 以改进的定域密度近似研究核子-有限核的相对论微观光学势. 物理学报, 1993, 42(1): 9-16. doi: 10.7498/aps.42.9
    [20] 方励之, 向守平. 广义相对论的有核多层球的结构及其稳定性. 物理学报, 1982, 31(9): 1223-1234. doi: 10.7498/aps.31.1223
计量
  • 文章访问数:  6037
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-08-17
  • 上网日期:  2020-12-05
  • 刊出日期:  2020-12-20

/

返回文章
返回