搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅析电解质中离子输运的微观物理图像

任元 邹喆乂 赵倩 王达 喻嘉 施思齐

引用本文:
Citation:

浅析电解质中离子输运的微观物理图像

任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐

Brief overview of microscopic physical image of ion transport in electrolytes

Ren Yuan, Zou Zhe-Yi, Zhao Qian, Wang Da, Yu Jia, Shi Si-Qi
PDF
HTML
导出引用
  • 解析离子在电解质中的输运特征所表现出的微观物理图像, 对于调控离子传导行为具有重要的指导意义. 本文系统总结了离子在液态、有机聚合物和无机固态电解质中的离子输运物理图像及其影响因素, 通过分析各种输运物理模型并比较三类电解质中的离子输运机制, 提炼出勾勒离子输运物理图像的相关描述因子. 输运介质的物理形态从连续流体到柔性载体再到刚性骨架的演变过程中, 离子输运图像由各类电解质的固有属性与外部条件共同刻画, 其中介质无序性占据主导作用. 揭示电解质结构和离子电导率及输运过程等动力学行为之间的科学规律, 有利于发展基于离子输运微观物理图像的传导离子动力学性能调控方法.
    Analyzing the microscopic physical image of the ion transport characteristics has important guiding significance for improving the ion conduction behavior in the electrolytes. In this article, we summarize the factors influencing the physical images of ion transport in liquid, organic polymer and inorganic solid electrolytes. The descriptive factors relating to the ion transport physical image are refined by analyzing various transport physical models and comparing the ion transport mechanisms in the three types of electrolytes. In the evolution of the physical state from continuous fluid to flexible carrier to rigid framework, the ion transport image is characterized by the inherent properties of various electrolytes and external conditions, in which the disorder of the medium plays a dominant role. Revealing the relationships between the electrolyte structure and dynamic behaviors with the ion conductivity and transport process is conducive to the development of the method of controlling the dynamic performance of conducting ion based on the microphysical image of ion transport.
      通信作者: 施思齐, sqshi@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874254, 51702170, 51802187, 51622207)、上海市青年科技英才扬帆计划(批准号: 18YF1408700)和内蒙古自然科学基金(批准号: 2020MS05036)资助的课题
      Corresponding author: Shi Si-Qi, sqshi@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874254, 51702170, 51802187, 51622207), the Sailing Program of Shanghai, China (Grant No. 18YF1408700), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2020MS05036)
    [1]

    Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion- Controlled Processes (Springer: Berlin, Heidelberg) pp27−36

    [2]

    Chen R S, Li Q H, Yu X Q, Chen L Q, Li H 2020 Chem. Rev. 120 6820Google Scholar

    [3]

    Xu K 2004 Chem. Rev. 104 4303Google Scholar

    [4]

    Xu K, Lam Y, Zhang S S, Jow T R, Curtis T B 2007 J. Phys. Chem. C 111 7411Google Scholar

    [5]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [6]

    Winter M, Barnett B, Xu K 2018 Chem. Rev. 118 11433Google Scholar

    [7]

    Li M, Wang C S, Chen Z W, Xu K, Lu J 2020 Chem. Rev. 120 6783Google Scholar

    [8]

    Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q 2020 Chem. Rev. 120 4169Google Scholar

    [9]

    Gao Y R, Nolan A M, Du P, Wu Y F, Yang C, Chen Q L, Mo Y F, Bo S H 2020 Chem. Rev. 120 5954Google Scholar

    [10]

    Borodin O, Self J L, Persson K A, Wang C S, Xu K 2020 Joule 4 69Google Scholar

    [11]

    Wang C W, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y F, Thangadurai V, Hu L B 2020 Chem. Rev. 120 4257Google Scholar

    [12]

    Fick A 1855 Annalen der Physik und Chemie 94 59

    [13]

    Park M, Zhang X C, Chung M, Less G B, Sastry A M 2010 J. Power Sources 195 7904Google Scholar

    [14]

    Wilkinson DS 2000 Mass Transport in Solid and Fluids (Cambridge: Cambridge University Press) pp47−50

    [15]

    Aziz S B, Woo T J, Kadir M F Z, Ahmed H M 2018 J. Sci.-Adv. Mater. Dev. 3 1

    [16]

    Quartarone E, Mustarelli P 2011 Chem. Soc. Rev. 40 2525Google Scholar

    [17]

    Catlow C R A 1983 Solid State Ionics 8 89Google Scholar

    [18]

    Vargas-Barbosa N M, Roling B 2020 ChemElectroChem 7 367Google Scholar

    [19]

    Le Claire A 1970 In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion Controlled Processes (Heidelberg: Springer) p10

    [20]

    Zhao Q, Pan L, Li Y J, Chen L Q, Shi S Q 2018 Rare Met. 37 497Google Scholar

    [21]

    Shi S Q, Lu P, Liu Z Y, Qi Y, Hector Jr. L G, Li H, Harris S J 2012 J. Am. Chem. Soc. 134 15476Google Scholar

    [22]

    Zhang L W, He B, Zhao Q, Zou Z Y, Chi S T, Mi P H, Ye A J, Li Y J, Wang D, Avdeev M, Adams S, Shi S Q 2020 Adv. Funct. Mater. 30 2003087Google Scholar

    [23]

    Zou Z Y, Ma N Y, Wang A P, Ran Y B, Song T, Jiao Y, Liu J P, Zhou H, Shi W, He B, Wang D, Li Y J, Avdeev M, Shi S Q 2020 Adv. Energy Mater. 10 2001486Google Scholar

    [24]

    Cresce A v W, Xu K 2011 J. Electrochem. Soc. 158 A337Google Scholar

    [25]

    Xu K 2007 J. Electrochem. Soc. 154 A162Google Scholar

    [26]

    Zheng J X, Hou Y Y, Duan Y D, Song X H, Wei Y, Liu T C, Hu J T, Guo H, Zhuo Z Q, Liu L L, Chang Z, Wang X W, Zherebetskyy D, Fang Y Y, Lin Y, Xu K, Wang L W, Wu Y P, Pan F 2015 Nano Lett. 15 6102Google Scholar

    [27]

    Ratner M A, Shriver D F 1988 Chem. Rev. 88 109Google Scholar

    [28]

    MacGlashan G S, Andreev Y G, Bruce P G 1999 Nature 398 792Google Scholar

    [29]

    Xue Z, He D, Xie X 2015 J. Mater. Chem. A 3 19218Google Scholar

    [30]

    陈立坤, 胡懿, 马家宾, 黄妍斐, 俞静, 贺艳兵, 康飞宇 2020 化学工业与工程 37 2

    Chen L K, Hu Y, Ma J B, Huang Y F, Yu J, He Y B, Kang F Y 2020 Chem Industry And Engineering 37 2

    [31]

    Meyer W H 1998 Adv. Mater. 10 439Google Scholar

    [32]

    Adachi G Y, Imanaka N, Aono H 1996 Adv. Mater. 8 127Google Scholar

    [33]

    Fleig J 2003 Solid State Ionics 161 279Google Scholar

    [34]

    Wang S F, Chen L Q 2016 Chin. Phys. B 25 018202Google Scholar

    [35]

    Pan J, Zhang Q L, Xiao X C, Cheng Y T, Qi Y 2016 ACS Appl. Mater. Interfaces 8 5687Google Scholar

    [36]

    Ren Y, Qi Z H, Zhang C, Yang S B, Ma X Y, Liu X J, Tan X, Sun S Y, Cao Y N 2020 Comput. Mater. Sci. 176 109535Google Scholar

    [37]

    Li Y T, Xu B Y, Xu H H, Duan H N, Lü X J, Xin S, Zhou W D, Xue L G, Fu G T, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. 56 753Google Scholar

    [38]

    Wert C 1950 Phys. Rev. 79 601Google Scholar

    [39]

    Vineyard G 1957 J. Phys. Chem. Sol. 3 121Google Scholar

    [40]

    Funke K 1993 Prog. Solid State Chem. 22 111Google Scholar

    [41]

    He X F, Zhu Y Z, Mo Y F 2017 Nat. Commun. 8 15893Google Scholar

    [42]

    Zhang B K, Yang L Y, Wang L W, Pan F 2019 Nano Energy 62 844Google Scholar

    [43]

    de Klerk N J J, van der Maas E, Wagemaker M 2018 ACS Appl. Energy Mater. 1 3230Google Scholar

    [44]

    Zhu Z, Chu I H, Deng Z, Ong S P 2015 Chem. Mater. 27 8318Google Scholar

    [45]

    Zhang Z Z, Zou Z Y, Kaup K, Xiao R J, Shi S Q, Avdeev M, Hu Y S, Wang D, He B, Li H, Huang X J, Nazar L F, Chen L Q 2019 Adv. Energy Mater. 9 1902373Google Scholar

    [46]

    Agmon N 1995 Chem. Phys. Lett. 244 456Google Scholar

    [47]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [48]

    Hu P, Zou Z Y, Sun X W, Wang D, Ma J, Kong Q Y, Xiao D D, Gu L, Zhou X H, Zhao J W, Dong S M, He B, Avdeev M, Shi S Q, Cui G L, Chen L Q 2020 Adv. Mater. 32 1907526Google Scholar

    [49]

    Li J, Guan M X, Nan P F, Wang J, Ge B H, Qiao K M, Zhang H R, Liang W H, Hao J Z, Zhou H B, Shen F R, Liang F X, Zhang C, Liu M, Meng S, Zhu T, X Hu F, Wu T, Guo J D, Sun J R, Shen B G 2020 Nano Energy 78 105215Google Scholar

    [50]

    Yamada Y, Wang J, Ko S, Watanabe E, Yamada A 2019 Nat. Energy 4 269Google Scholar

    [51]

    Geoffroy I, Willmann P, Mesfar K, CarréB, Lemordant D 2000 Electrochim. Acta 45 2019Google Scholar

    [52]

    Ding M S, Jow T R 2003 J. Electrochem. Soc. 150 A620Google Scholar

    [53]

    Blint R J 1995 J. Electrochem. Soc. 142 696Google Scholar

    [54]

    Chagnes A, Carré B, Willmann P, Lemordant D 2002 J. Power Sources 109 203Google Scholar

    [55]

    Hayamizu K, Aihara Y 2004 Electrochim. Acta 49 3397Google Scholar

    [56]

    Brodd R J, Huang W, Akridge J R 2000 Macromol. Symp. 159 229Google Scholar

    [57]

    Yang Y Y C, Davies D M, Yin Y J, Borodin O, Lee J Z, Fang C C, Olguin M, Zhang Y H, Sablina E S, Wang X F, Rustomji C S, Meng Y S 2019 Joule 3 1Google Scholar

    [58]

    Lukatskaya M R, Feldblyum J I, Mackanic D G, Lissel F, Michels D L, Cui Y, Bao Z N 2018 Energy Environ. Sci. 11 2876Google Scholar

    [59]

    Ohno H 2005 Electrochemical Aspects of Ionic Liquids (Wiley Interscience) pp1−3

    [60]

    Webber A, Blomgren G E 2002 Advances in Lithium-Ion Batteries (Kluwer: Academic/Plenum Publishers) pp185−232

    [61]

    Lee J S, Bae J Y, Lee H, Quan N D, Kim H S, Kim H 2004 J. Ind. Eng. Chem. 10 1086

    [62]

    Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M 2006 J. Power Sources 162 658

    [63]

    Zhang X Q, Chen X, Hou L P, Li B Q, Cheng X B, Huang J Q, Zhang Q 2019 ACS Energy Lett. 4 411Google Scholar

    [64]

    Chang Z, Qiao Y, Deng H, Yang H J, He P, Zhou H S 2020 Joule 4 1Google Scholar

    [65]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481Google Scholar

    [66]

    Suo L M, Fang Z, Hu Y S, Chen L Q 2016 Chin. Phys. B 25 016101Google Scholar

    [67]

    Guo Z L, Wang T S, Wei H H, Long Y Z, Yang C, Wang D, Lang J L, Huang K, Hussain N, Song C X, Guan B, Ge B H, Zhang Q F, Wu H 2019 Angew. Chem. Int. Ed. 131 12699Google Scholar

    [68]

    Fenton D E, Parker J M, Wright P V 1973 Polymer 14 589Google Scholar

    [69]

    Armand M B, Chabagno J M, Duclot M J 1979 Fast Ion Transport in Solids (New York: Elsevier) p131

    [70]

    Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K 2019 Adv. Mater. 31 1804909Google Scholar

    [71]

    Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y 2015 Adv. Energy Mater. 5 1500353Google Scholar

    [72]

    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M 2013 Nat. Mater. 12 452Google Scholar

    [73]

    Yu Z, Mackanic D G, Michaels W, Lee M, Pei A, Feng D W, Zhang Q H, Tsao Y C, Amanchukwu C V, Yan X Z, Wang H S, Chen S C, Liu K, Kang J H, Qin J, Cui Y, Bao Z N 2019 Joule 3 2761Google Scholar

    [74]

    Amanchukwu C, Yu Z, Kong X, Qin J, Cui Y, Bao Z N 2020 J. Am. Chem. Soc. 142 7393Google Scholar

    [75]

    Mackanic D G, Michaels W, Lee M, Feng D W, Lopez J, Qin J, Cui Y, Bao Z N 2018 Adv. Energy Mater. 8 1800703Google Scholar

    [76]

    Lopez J, Sun Y M, Mackanic D G, Lee M, Foudeh A M, Song M S, Cui Y, Z N Bao 2018 Adv. Mater. 30 1804142Google Scholar

    [77]

    Mackanic D G, Yan X Z, Zhang Q H, Matsuhisa N J, Yu Z, Jiang Y W, Manika T, Lopez J, Yan H P, Liu K, Chen X D, Cui Y, Bao Z N 2019 Nat. Commun. 10 5384Google Scholar

    [78]

    Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y 2019 Nat. Nanotechnol. 14 705Google Scholar

    [79]

    Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M 2017 Nat. Rev. Mater. 2 17001Google Scholar

    [80]

    Kimura K, M Hirao, Yokoyama M 1991 J. Mater. Chem. 1 293Google Scholar

    [81]

    李昕桐, 张霖琛, 张焕瑞, 张波涛, 崔光磊 2020 储能科学与技术 9 1595

    Li X T, Zhang L C, Zhang H R, Zhang B T, Cui G L 2020 Energy Storage Sci. Technol. 9 1595

    [82]

    Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B 2018 Nano Energy 46 176Google Scholar

    [83]

    赵宁, 李忆秋, 张静娴, 狄增峰, 郭向欣 2016 储能科学与技术 5 754Google Scholar

    Zhao N, Li Y Q, Zhang J X, Di Z F, Guo X X 2016 Energy Storage Sci. Technol. 5 754Google Scholar

    [84]

    Huo H Y, Li X N, Chen Y, Liang J N, Deng S X, Gao X J, Kieran Doyle-Davis, Li R Y, Guo X X, Shen Y, Nan C W, Sun X L 2020 Energy Storage Mater. 29 361Google Scholar

    [85]

    林祖纕, 郭祝崑, 孙成文, 李世椿, 陈昆刚, 田顺宝, 严东生 1983 快离子导体(固体电解质)基础、材料、应用(上海: 上海科学技术出版社) 第1—4页

    Li Z X, Guo Z K, Sun C W, Li S C, Chen K G, Tian S B, Yan D S 1983 Fast ion conductor (solid electrolyte) basis, material, application (Shanghai: Shanghai Science and Technology Press) pp1–4 (in Chinese)[

    [86]

    萨拉蒙M B著 (王刚 刘长乐译, 陈立泉校) 1984 快离子导体物理(北京: 科学出版社)第1—4页

    Salamon M B (translated by Wang G Liu C L, Proof by Chen L Q)1984 Physics of Superionic Conductors (Beijing: Science Press) pp1–4 (in Chinese)[

    [87]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. 46 7778Google Scholar

    [88]

    Du F M, Zhao N, Li Y Q, Chen C, Liu Z W, Guo X X 2015 J. Power Sources 300 24Google Scholar

    [89]

    Jalem R, Yamamoto Y, Shiiba H, Nakayama M, Munakata H, Kasuga T, Kanamura K 2013 Chem. Mater. 25 425Google Scholar

    [90]

    Zhao N, Khokhar W, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [91]

    Hong H Y P 1976 Mater. Res. Bull. 11 173Google Scholar

    [92]

    Hong Y P, Kafalas J A, Bayard M 1978 Mater. Res. Bull. 13 757Google Scholar

    [93]

    Goodenough J B, Hong H Y P, Kafalas J A 1976 Mater. Res. Bull. 11 203Google Scholar

    [94]

    Zhang Z Z, Zhang Q H, Shi J N, Chu Y S, Yu X Q, Xu K Q, Ge M Y, Yan H F, Li W J, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J 2016 Adv. Energy Mater. 7 1601196Google Scholar

    [95]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [96]

    Lin Z, Li S, Tian S, Yu H 1984 Sci. Sin. (Ser. A) 27 889

    [97]

    Lu X, Wang S H, Xiao R J, Shi S Q, Li H, Chen L Q 2017 Nano Energy 41 626Google Scholar

    [98]

    Bay M C, Wang M, Grissa R, Heinz M V F, Sakamoto J, Battaglia C 2020 Adv. Energy Mater. 10 1902899Google Scholar

    [99]

    Lei D, He Y B H, Huang, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S 2019 Nat. Commun. 10 4244Google Scholar

    [100]

    Sudworth J L 1984 J. Power Sources 11 143Google Scholar

    [101]

    Jolly D S, Ning Z, Darnbrough J E, Kasemchainan J, Hartley G O, Adamson P, Armstrong D E J, Marrow J, Bruce P G 2020 ACS Appl. Mater. Interfaces 12 678Google Scholar

    [102]

    Kanno R, Murayama M 2001 J. Electrochem. Soc. 148 A742Google Scholar

    [103]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [104]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [105]

    刘丽露, 吴凡, 李泓, 陈立泉 2019 硅酸盐学报 47 1367

    Liu L L, Wu F, Li H, Chen L Q 2019 J. Chin. Ceram. Soc. 47 1367

    [106]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901Google Scholar

    [107]

    Takagi S, Ikeshoji T, Sato T, Orimo S 2020 Appl. Phys. Lett. 116 173901Google Scholar

    [108]

    Smith J G, Siegel D J 2020 Nat. Commun. 11 1483Google Scholar

    [109]

    Li X N, Liang J W, Yang X F, Adair K R, Wang C S, Zhao F P, Sun X L 2020 Energy Environ. Sci. 13 1429Google Scholar

    [110]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [111]

    Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F 2019 Angew. Chem. Int. Ed. 58 8039Google Scholar

    [112]

    Schlem R, Muy S, Prinz N, Banik A, Horn Y, Zobel M, Zeier W 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [113]

    Liang J W, Li X N, Wang S, Adair K R, Li W H, Zhao Y, Wang C H, Hu Y F, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Mo Y F, Sun X L 2020 J. Am. Chem. Soc. 142 7012Google Scholar

    [114]

    Park K, Kaup K, Assoud A, Zhang Q, Wu X, Nazar L 2020 ACS Energy Lett. 5 533Google Scholar

    [115]

    Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J 2018 ACS Energy Lett. 3 335Google Scholar

    [116]

    Rolland J, Poggi E, Vlad A, Gohy J F 2015 Polymer 68 344Google Scholar

    [117]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [118]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018211Google Scholar

    [119]

    Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J 2020 Chem. 6 1Google Scholar

    [120]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [121]

    He B, Ye A J, Chi S T, Mi P H, Ran Y B, Zhang L W, Zou X X, Pu B W, Zhao Q, Zou Z Y, Wang D, Zhang W Q, Zhao J T, Avdeev M, Shi S Q 2020 Sci. Data 7 153Google Scholar

    [122]

    He B, Mi P H, Ye A J, Chi S T, Jiao Y, Zhang L W, Pu B W, Zou Z Y, Zhang W Q, Avdeev M, Adams S, Zhao J T, Shi S Q 2021 Acta Mater. 203 116490 (SPSE 平台https://matgen.nscc-gz.cn/solidElectrolyte/

    [123]

    Pan L, Zhang LW, Ye A J, Chi S T, Zou Z Y, He B, Chen L L, Zhao Q, Wang D, Shi S Q 2019 J. Materiomics 5 688Google Scholar

    [124]

    Yang Y H, Wu Q, Cui Y H, Chen Y C, Shi S Q, Wang R Z, Yan H 2016 ACS Appl. Mater. Interfaces 8 25229Google Scholar

    [125]

    Li Y J, Zhao Y, Cui Y H, Zou Z Y, Wang D, Shi S Q 2018 Comput. Mater. Sci. 144 338Google Scholar

    [126]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [127]

    Huang Y W, He Y, Sheng H, Lu X, Dong H N, Samanta S, Dong H L, Li X F, Kim D Y, Mao H K, Liu Y Z, Li H P, Li H, Wang L 2019 Natl. Sci. Rev. 6 239Google Scholar

    [128]

    Zhang T F, Wang Y M, Song T, Miyaoka H, Shinzato K, Miyaoka H, Ichikawa T, Shi S Q, Zhang X G, Isobe S, Hashimoto N, Kojima Y 2018 Joule 2 1Google Scholar

    [129]

    Lu X, Wang S H, Xiao R J, Shi S Q, Li H, Chen L Q 2017 Nano Energy. 41 626

    [130]

    Shi S Q, Xu L F, Ouyang C Y, Wang Z X, Chen L Q 2006 Ionics 12 343Google Scholar

    [131]

    Liu F C, Shadike Z, Wang X F, Shi S Q, Zhou Y N, Chen G Y, Yang X Q, Weng L H, Zhao J T, Fu Z W 2016 Inorg. Chem. 55 6504Google Scholar

    [132]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [133]

    Liu Y, Guo B R, Zou X X, Li Y J, Shi S Q 2020 Energy Storage Mater. 31 434Google Scholar

    [134]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin. 69 226401

  • 图 1  可供离子输运的电解质, 包括: 液态电解质、聚合物基固态电解质、无机固态电解质以及复合固态电解质

    Fig. 1.  The electrolytes for ion transport: liquid electrolyte, polymer-based solid electrolyte, inorganic solid electrolyte and composite solid electrolyte.

    图 2  影响离子输运微观物理图像的因素包括输运机制与描述因子. 如: 左上角knock-off离子输运[21]; 右上角: BVSE方法描述离子输运通道[22]; 左下角: NASICON中多离子协同输运[23]; 复合结构电解质离子输运[8]

    Fig. 2.  The factors affecting the microscopic physical image of ion transport: transport mechanism and description factors. For example: knock-off ion transport[21], BVSE method based ion transport channel description[22], multi-ion coordinated transport in NASICON[23], mobile ion in composite solids[8].

    图 3  液态电解质溶剂化与去溶剂化动力学过程中携带式离子输运方式示意图

    Fig. 3.  The schematic diagram of portable ion transport in the kinetic process of solvation and desolvation of liquid electrolyte.

    图 4  有机聚合物基固态电解质中离子在配位之间传递输运方式示意图

    Fig. 4.  The schematic diagram of ion transport between coordination in the organic polymer-based solid electrolyte.

    图 5  无机固态电解质中离子输运方式: (a)传导离子在晶体内输运方式示意图; (b)传导离子沿晶界输运方式示意图; (c)传导离子跨晶界输运方式示意图

    Fig. 5.  The ion transport in the inorganic solid electrolytes: (a) The ion transport in the bulk; (b) the ion transport along the grain boundaries; (c) the ion transport across the grain boundaries.

    图 6  无机固态电解质中晶体内离子间隙扩散输运方式:(a)离子直接在间隙中迁移示意图; (b)离子在空位之间迁移示意图

    Fig. 6.  The ion interstitial diffusion transport in the inorganic solid electrolytes: (a) The interstitial ion transport; (b) the vacant ion transport.

    图 7  无机固态电解质中输运离子与骨架离子换位协同输运示意图

    Fig. 7.  The concerted and coordinated diffusion of transport ion and skeleton ion in the inorganic solid electrolytes.

    图 8  电解质中主导离子输运微观物理图像的因素由结构主导作用到介质主导作用的演变过程[10]

    Fig. 8.  The evolution process between structural and vehicular effect the microscopic physical image of the contribution to the ion transport in the electrolytes[10].

    图 9  “聚合物陶瓷”和“陶瓷聚合物”电解质系统中可能的离子传输机制[82]

    Fig. 9.  The schematic diagram of possible ion transport mechanisms in "ceramic-in-polymer" and "polymer-in-ceramic" electrolyte system[82].

    图 10  传导离子在LTMH (Li3TMCl6)中输运特性 (a) Li+$ P\bar 3 m1$ Li3YCl6中输运路径[110]; (b) Li+在hcp阴离子晶格Li3YCl6中输运路径[111]; (c) Li+在Li3ErCl6和Li3YCl6中的输运行为[112]; (d) Li+在ccp阴离子晶格Li3ScCl6中输运路径[113]

    Fig. 10.  Transport characteristics of conductive ions in LTMH (Li3TMCl6): (a) The ion transport in Li3YCl6 with space group $P\bar 3 m1$[110]; (b) the ion transport in Li3YCl6 with hcp-like Anion lattice[111]; (c) the ion transport in Li3MCl6 (M = Y, Er) with space group $P\bar 3 m1$[112]; (d) the ion transport in Li3ScCl6 with ccp Anion lattice[113].

    图 11  液态、聚合物以及无机固态电解质离子运输形式 (a) 液态电解质中溶剂分子协调离子输运[115]; (b) 聚合物基电解质中链段运动与离子输运[116]; (c) 具有骨架通道NASICON中多离子协同输运[23]

    Fig. 11.  Transport form of ion in the liquid, organic polymer and inorganic solid electrolytes: (a) Li+ coordination in electrolyte[115]; (b) Ion coordinated transport in the single-ion solid-state polymer electrolytes[116]; (c) Concerted migration of multi-ion in NASICON with framework channels[23].

  • [1]

    Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion- Controlled Processes (Springer: Berlin, Heidelberg) pp27−36

    [2]

    Chen R S, Li Q H, Yu X Q, Chen L Q, Li H 2020 Chem. Rev. 120 6820Google Scholar

    [3]

    Xu K 2004 Chem. Rev. 104 4303Google Scholar

    [4]

    Xu K, Lam Y, Zhang S S, Jow T R, Curtis T B 2007 J. Phys. Chem. C 111 7411Google Scholar

    [5]

    Xu K 2014 Chem. Rev. 114 11503Google Scholar

    [6]

    Winter M, Barnett B, Xu K 2018 Chem. Rev. 118 11433Google Scholar

    [7]

    Li M, Wang C S, Chen Z W, Xu K, Lu J 2020 Chem. Rev. 120 6783Google Scholar

    [8]

    Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q 2020 Chem. Rev. 120 4169Google Scholar

    [9]

    Gao Y R, Nolan A M, Du P, Wu Y F, Yang C, Chen Q L, Mo Y F, Bo S H 2020 Chem. Rev. 120 5954Google Scholar

    [10]

    Borodin O, Self J L, Persson K A, Wang C S, Xu K 2020 Joule 4 69Google Scholar

    [11]

    Wang C W, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y F, Thangadurai V, Hu L B 2020 Chem. Rev. 120 4257Google Scholar

    [12]

    Fick A 1855 Annalen der Physik und Chemie 94 59

    [13]

    Park M, Zhang X C, Chung M, Less G B, Sastry A M 2010 J. Power Sources 195 7904Google Scholar

    [14]

    Wilkinson DS 2000 Mass Transport in Solid and Fluids (Cambridge: Cambridge University Press) pp47−50

    [15]

    Aziz S B, Woo T J, Kadir M F Z, Ahmed H M 2018 J. Sci.-Adv. Mater. Dev. 3 1

    [16]

    Quartarone E, Mustarelli P 2011 Chem. Soc. Rev. 40 2525Google Scholar

    [17]

    Catlow C R A 1983 Solid State Ionics 8 89Google Scholar

    [18]

    Vargas-Barbosa N M, Roling B 2020 ChemElectroChem 7 367Google Scholar

    [19]

    Le Claire A 1970 In Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion Controlled Processes (Heidelberg: Springer) p10

    [20]

    Zhao Q, Pan L, Li Y J, Chen L Q, Shi S Q 2018 Rare Met. 37 497Google Scholar

    [21]

    Shi S Q, Lu P, Liu Z Y, Qi Y, Hector Jr. L G, Li H, Harris S J 2012 J. Am. Chem. Soc. 134 15476Google Scholar

    [22]

    Zhang L W, He B, Zhao Q, Zou Z Y, Chi S T, Mi P H, Ye A J, Li Y J, Wang D, Avdeev M, Adams S, Shi S Q 2020 Adv. Funct. Mater. 30 2003087Google Scholar

    [23]

    Zou Z Y, Ma N Y, Wang A P, Ran Y B, Song T, Jiao Y, Liu J P, Zhou H, Shi W, He B, Wang D, Li Y J, Avdeev M, Shi S Q 2020 Adv. Energy Mater. 10 2001486Google Scholar

    [24]

    Cresce A v W, Xu K 2011 J. Electrochem. Soc. 158 A337Google Scholar

    [25]

    Xu K 2007 J. Electrochem. Soc. 154 A162Google Scholar

    [26]

    Zheng J X, Hou Y Y, Duan Y D, Song X H, Wei Y, Liu T C, Hu J T, Guo H, Zhuo Z Q, Liu L L, Chang Z, Wang X W, Zherebetskyy D, Fang Y Y, Lin Y, Xu K, Wang L W, Wu Y P, Pan F 2015 Nano Lett. 15 6102Google Scholar

    [27]

    Ratner M A, Shriver D F 1988 Chem. Rev. 88 109Google Scholar

    [28]

    MacGlashan G S, Andreev Y G, Bruce P G 1999 Nature 398 792Google Scholar

    [29]

    Xue Z, He D, Xie X 2015 J. Mater. Chem. A 3 19218Google Scholar

    [30]

    陈立坤, 胡懿, 马家宾, 黄妍斐, 俞静, 贺艳兵, 康飞宇 2020 化学工业与工程 37 2

    Chen L K, Hu Y, Ma J B, Huang Y F, Yu J, He Y B, Kang F Y 2020 Chem Industry And Engineering 37 2

    [31]

    Meyer W H 1998 Adv. Mater. 10 439Google Scholar

    [32]

    Adachi G Y, Imanaka N, Aono H 1996 Adv. Mater. 8 127Google Scholar

    [33]

    Fleig J 2003 Solid State Ionics 161 279Google Scholar

    [34]

    Wang S F, Chen L Q 2016 Chin. Phys. B 25 018202Google Scholar

    [35]

    Pan J, Zhang Q L, Xiao X C, Cheng Y T, Qi Y 2016 ACS Appl. Mater. Interfaces 8 5687Google Scholar

    [36]

    Ren Y, Qi Z H, Zhang C, Yang S B, Ma X Y, Liu X J, Tan X, Sun S Y, Cao Y N 2020 Comput. Mater. Sci. 176 109535Google Scholar

    [37]

    Li Y T, Xu B Y, Xu H H, Duan H N, Lü X J, Xin S, Zhou W D, Xue L G, Fu G T, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. 56 753Google Scholar

    [38]

    Wert C 1950 Phys. Rev. 79 601Google Scholar

    [39]

    Vineyard G 1957 J. Phys. Chem. Sol. 3 121Google Scholar

    [40]

    Funke K 1993 Prog. Solid State Chem. 22 111Google Scholar

    [41]

    He X F, Zhu Y Z, Mo Y F 2017 Nat. Commun. 8 15893Google Scholar

    [42]

    Zhang B K, Yang L Y, Wang L W, Pan F 2019 Nano Energy 62 844Google Scholar

    [43]

    de Klerk N J J, van der Maas E, Wagemaker M 2018 ACS Appl. Energy Mater. 1 3230Google Scholar

    [44]

    Zhu Z, Chu I H, Deng Z, Ong S P 2015 Chem. Mater. 27 8318Google Scholar

    [45]

    Zhang Z Z, Zou Z Y, Kaup K, Xiao R J, Shi S Q, Avdeev M, Hu Y S, Wang D, He B, Li H, Huang X J, Nazar L F, Chen L Q 2019 Adv. Energy Mater. 9 1902373Google Scholar

    [46]

    Agmon N 1995 Chem. Phys. Lett. 244 456Google Scholar

    [47]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [48]

    Hu P, Zou Z Y, Sun X W, Wang D, Ma J, Kong Q Y, Xiao D D, Gu L, Zhou X H, Zhao J W, Dong S M, He B, Avdeev M, Shi S Q, Cui G L, Chen L Q 2020 Adv. Mater. 32 1907526Google Scholar

    [49]

    Li J, Guan M X, Nan P F, Wang J, Ge B H, Qiao K M, Zhang H R, Liang W H, Hao J Z, Zhou H B, Shen F R, Liang F X, Zhang C, Liu M, Meng S, Zhu T, X Hu F, Wu T, Guo J D, Sun J R, Shen B G 2020 Nano Energy 78 105215Google Scholar

    [50]

    Yamada Y, Wang J, Ko S, Watanabe E, Yamada A 2019 Nat. Energy 4 269Google Scholar

    [51]

    Geoffroy I, Willmann P, Mesfar K, CarréB, Lemordant D 2000 Electrochim. Acta 45 2019Google Scholar

    [52]

    Ding M S, Jow T R 2003 J. Electrochem. Soc. 150 A620Google Scholar

    [53]

    Blint R J 1995 J. Electrochem. Soc. 142 696Google Scholar

    [54]

    Chagnes A, Carré B, Willmann P, Lemordant D 2002 J. Power Sources 109 203Google Scholar

    [55]

    Hayamizu K, Aihara Y 2004 Electrochim. Acta 49 3397Google Scholar

    [56]

    Brodd R J, Huang W, Akridge J R 2000 Macromol. Symp. 159 229Google Scholar

    [57]

    Yang Y Y C, Davies D M, Yin Y J, Borodin O, Lee J Z, Fang C C, Olguin M, Zhang Y H, Sablina E S, Wang X F, Rustomji C S, Meng Y S 2019 Joule 3 1Google Scholar

    [58]

    Lukatskaya M R, Feldblyum J I, Mackanic D G, Lissel F, Michels D L, Cui Y, Bao Z N 2018 Energy Environ. Sci. 11 2876Google Scholar

    [59]

    Ohno H 2005 Electrochemical Aspects of Ionic Liquids (Wiley Interscience) pp1−3

    [60]

    Webber A, Blomgren G E 2002 Advances in Lithium-Ion Batteries (Kluwer: Academic/Plenum Publishers) pp185−232

    [61]

    Lee J S, Bae J Y, Lee H, Quan N D, Kim H S, Kim H 2004 J. Ind. Eng. Chem. 10 1086

    [62]

    Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M 2006 J. Power Sources 162 658

    [63]

    Zhang X Q, Chen X, Hou L P, Li B Q, Cheng X B, Huang J Q, Zhang Q 2019 ACS Energy Lett. 4 411Google Scholar

    [64]

    Chang Z, Qiao Y, Deng H, Yang H J, He P, Zhou H S 2020 Joule 4 1Google Scholar

    [65]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481Google Scholar

    [66]

    Suo L M, Fang Z, Hu Y S, Chen L Q 2016 Chin. Phys. B 25 016101Google Scholar

    [67]

    Guo Z L, Wang T S, Wei H H, Long Y Z, Yang C, Wang D, Lang J L, Huang K, Hussain N, Song C X, Guan B, Ge B H, Zhang Q F, Wu H 2019 Angew. Chem. Int. Ed. 131 12699Google Scholar

    [68]

    Fenton D E, Parker J M, Wright P V 1973 Polymer 14 589Google Scholar

    [69]

    Armand M B, Chabagno J M, Duclot M J 1979 Fast Ion Transport in Solids (New York: Elsevier) p131

    [70]

    Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K 2019 Adv. Mater. 31 1804909Google Scholar

    [71]

    Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y 2015 Adv. Energy Mater. 5 1500353Google Scholar

    [72]

    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M 2013 Nat. Mater. 12 452Google Scholar

    [73]

    Yu Z, Mackanic D G, Michaels W, Lee M, Pei A, Feng D W, Zhang Q H, Tsao Y C, Amanchukwu C V, Yan X Z, Wang H S, Chen S C, Liu K, Kang J H, Qin J, Cui Y, Bao Z N 2019 Joule 3 2761Google Scholar

    [74]

    Amanchukwu C, Yu Z, Kong X, Qin J, Cui Y, Bao Z N 2020 J. Am. Chem. Soc. 142 7393Google Scholar

    [75]

    Mackanic D G, Michaels W, Lee M, Feng D W, Lopez J, Qin J, Cui Y, Bao Z N 2018 Adv. Energy Mater. 8 1800703Google Scholar

    [76]

    Lopez J, Sun Y M, Mackanic D G, Lee M, Foudeh A M, Song M S, Cui Y, Z N Bao 2018 Adv. Mater. 30 1804142Google Scholar

    [77]

    Mackanic D G, Yan X Z, Zhang Q H, Matsuhisa N J, Yu Z, Jiang Y W, Manika T, Lopez J, Yan H P, Liu K, Chen X D, Cui Y, Bao Z N 2019 Nat. Commun. 10 5384Google Scholar

    [78]

    Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y 2019 Nat. Nanotechnol. 14 705Google Scholar

    [79]

    Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M 2017 Nat. Rev. Mater. 2 17001Google Scholar

    [80]

    Kimura K, M Hirao, Yokoyama M 1991 J. Mater. Chem. 1 293Google Scholar

    [81]

    李昕桐, 张霖琛, 张焕瑞, 张波涛, 崔光磊 2020 储能科学与技术 9 1595

    Li X T, Zhang L C, Zhang H R, Zhang B T, Cui G L 2020 Energy Storage Sci. Technol. 9 1595

    [82]

    Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B 2018 Nano Energy 46 176Google Scholar

    [83]

    赵宁, 李忆秋, 张静娴, 狄增峰, 郭向欣 2016 储能科学与技术 5 754Google Scholar

    Zhao N, Li Y Q, Zhang J X, Di Z F, Guo X X 2016 Energy Storage Sci. Technol. 5 754Google Scholar

    [84]

    Huo H Y, Li X N, Chen Y, Liang J N, Deng S X, Gao X J, Kieran Doyle-Davis, Li R Y, Guo X X, Shen Y, Nan C W, Sun X L 2020 Energy Storage Mater. 29 361Google Scholar

    [85]

    林祖纕, 郭祝崑, 孙成文, 李世椿, 陈昆刚, 田顺宝, 严东生 1983 快离子导体(固体电解质)基础、材料、应用(上海: 上海科学技术出版社) 第1—4页

    Li Z X, Guo Z K, Sun C W, Li S C, Chen K G, Tian S B, Yan D S 1983 Fast ion conductor (solid electrolyte) basis, material, application (Shanghai: Shanghai Science and Technology Press) pp1–4 (in Chinese)[

    [86]

    萨拉蒙M B著 (王刚 刘长乐译, 陈立泉校) 1984 快离子导体物理(北京: 科学出版社)第1—4页

    Salamon M B (translated by Wang G Liu C L, Proof by Chen L Q)1984 Physics of Superionic Conductors (Beijing: Science Press) pp1–4 (in Chinese)[

    [87]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. 46 7778Google Scholar

    [88]

    Du F M, Zhao N, Li Y Q, Chen C, Liu Z W, Guo X X 2015 J. Power Sources 300 24Google Scholar

    [89]

    Jalem R, Yamamoto Y, Shiiba H, Nakayama M, Munakata H, Kasuga T, Kanamura K 2013 Chem. Mater. 25 425Google Scholar

    [90]

    Zhao N, Khokhar W, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [91]

    Hong H Y P 1976 Mater. Res. Bull. 11 173Google Scholar

    [92]

    Hong Y P, Kafalas J A, Bayard M 1978 Mater. Res. Bull. 13 757Google Scholar

    [93]

    Goodenough J B, Hong H Y P, Kafalas J A 1976 Mater. Res. Bull. 11 203Google Scholar

    [94]

    Zhang Z Z, Zhang Q H, Shi J N, Chu Y S, Yu X Q, Xu K Q, Ge M Y, Yan H F, Li W J, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J 2016 Adv. Energy Mater. 7 1601196Google Scholar

    [95]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [96]

    Lin Z, Li S, Tian S, Yu H 1984 Sci. Sin. (Ser. A) 27 889

    [97]

    Lu X, Wang S H, Xiao R J, Shi S Q, Li H, Chen L Q 2017 Nano Energy 41 626Google Scholar

    [98]

    Bay M C, Wang M, Grissa R, Heinz M V F, Sakamoto J, Battaglia C 2020 Adv. Energy Mater. 10 1902899Google Scholar

    [99]

    Lei D, He Y B H, Huang, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S 2019 Nat. Commun. 10 4244Google Scholar

    [100]

    Sudworth J L 1984 J. Power Sources 11 143Google Scholar

    [101]

    Jolly D S, Ning Z, Darnbrough J E, Kasemchainan J, Hartley G O, Adamson P, Armstrong D E J, Marrow J, Bruce P G 2020 ACS Appl. Mater. Interfaces 12 678Google Scholar

    [102]

    Kanno R, Murayama M 2001 J. Electrochem. Soc. 148 A742Google Scholar

    [103]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [104]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [105]

    刘丽露, 吴凡, 李泓, 陈立泉 2019 硅酸盐学报 47 1367

    Liu L L, Wu F, Li H, Chen L Q 2019 J. Chin. Ceram. Soc. 47 1367

    [106]

    Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901Google Scholar

    [107]

    Takagi S, Ikeshoji T, Sato T, Orimo S 2020 Appl. Phys. Lett. 116 173901Google Scholar

    [108]

    Smith J G, Siegel D J 2020 Nat. Commun. 11 1483Google Scholar

    [109]

    Li X N, Liang J W, Yang X F, Adair K R, Wang C S, Zhao F P, Sun X L 2020 Energy Environ. Sci. 13 1429Google Scholar

    [110]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar

    [111]

    Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F 2019 Angew. Chem. Int. Ed. 58 8039Google Scholar

    [112]

    Schlem R, Muy S, Prinz N, Banik A, Horn Y, Zobel M, Zeier W 2019 Adv. Energy Mater. 10 1903719Google Scholar

    [113]

    Liang J W, Li X N, Wang S, Adair K R, Li W H, Zhao Y, Wang C H, Hu Y F, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Mo Y F, Sun X L 2020 J. Am. Chem. Soc. 142 7012Google Scholar

    [114]

    Park K, Kaup K, Assoud A, Zhang Q, Wu X, Nazar L 2020 ACS Energy Lett. 5 533Google Scholar

    [115]

    Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J 2018 ACS Energy Lett. 3 335Google Scholar

    [116]

    Rolland J, Poggi E, Vlad A, Gohy J F 2015 Polymer 68 344Google Scholar

    [117]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212Google Scholar

    [118]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018211Google Scholar

    [119]

    Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J 2020 Chem. 6 1Google Scholar

    [120]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [121]

    He B, Ye A J, Chi S T, Mi P H, Ran Y B, Zhang L W, Zou X X, Pu B W, Zhao Q, Zou Z Y, Wang D, Zhang W Q, Zhao J T, Avdeev M, Shi S Q 2020 Sci. Data 7 153Google Scholar

    [122]

    He B, Mi P H, Ye A J, Chi S T, Jiao Y, Zhang L W, Pu B W, Zou Z Y, Zhang W Q, Avdeev M, Adams S, Zhao J T, Shi S Q 2021 Acta Mater. 203 116490 (SPSE 平台https://matgen.nscc-gz.cn/solidElectrolyte/

    [123]

    Pan L, Zhang LW, Ye A J, Chi S T, Zou Z Y, He B, Chen L L, Zhao Q, Wang D, Shi S Q 2019 J. Materiomics 5 688Google Scholar

    [124]

    Yang Y H, Wu Q, Cui Y H, Chen Y C, Shi S Q, Wang R Z, Yan H 2016 ACS Appl. Mater. Interfaces 8 25229Google Scholar

    [125]

    Li Y J, Zhao Y, Cui Y H, Zou Z Y, Wang D, Shi S Q 2018 Comput. Mater. Sci. 144 338Google Scholar

    [126]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [127]

    Huang Y W, He Y, Sheng H, Lu X, Dong H N, Samanta S, Dong H L, Li X F, Kim D Y, Mao H K, Liu Y Z, Li H P, Li H, Wang L 2019 Natl. Sci. Rev. 6 239Google Scholar

    [128]

    Zhang T F, Wang Y M, Song T, Miyaoka H, Shinzato K, Miyaoka H, Ichikawa T, Shi S Q, Zhang X G, Isobe S, Hashimoto N, Kojima Y 2018 Joule 2 1Google Scholar

    [129]

    Lu X, Wang S H, Xiao R J, Shi S Q, Li H, Chen L Q 2017 Nano Energy. 41 626

    [130]

    Shi S Q, Xu L F, Ouyang C Y, Wang Z X, Chen L Q 2006 Ionics 12 343Google Scholar

    [131]

    Liu F C, Shadike Z, Wang X F, Shi S Q, Zhou Y N, Chen G Y, Yang X Q, Weng L H, Zhao J T, Fu Z W 2016 Inorg. Chem. 55 6504Google Scholar

    [132]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [133]

    Liu Y, Guo B R, Zou X X, Li Y J, Shi S Q 2020 Energy Storage Mater. 31 434Google Scholar

    [134]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin. 69 226401

  • [1] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [2] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [3] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善. 物理学报, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [4] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [5] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [6] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [7] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [8] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [9] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响. 物理学报, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [10] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [11] 钟诚, 陈智全, 杨伟国, 夏辉. 电解质对浓悬浮液中胶体颗粒扩散特性的影响. 物理学报, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [12] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [13] 胡永刚, 肖建中, 夏风, 武玺旺, 闫双志. 基于热膨胀性质的ZrO2 固体电解质性能与相关系模型. 物理学报, 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [14] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [15] 侯林涛, 黄 飞, 彭俊彪, 曹 镛. 高效饱和红光聚电解质的发光及电子注入特性研究. 物理学报, 2007, 56(10): 6104-6108. doi: 10.7498/aps.56.6104
    [16] 李子荣, 孟庆安, 管荻华, 王 刚. PAN为基凝胶聚合物电解质自扩散系数的NMR研究. 物理学报, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
    [17] 郭新, 袁润章, 孙尧卿, 崔崑. 晶界在多晶ZrO2基固体电解质中的作用. 物理学报, 1996, 45(5): 860-868. doi: 10.7498/aps.45.860
    [18] 袁望治, 黎文辉, 袁望曦, 王大志. 固体电解质蒙脱石结构与电导性能研究. 物理学报, 1990, 39(6): 98-104. doi: 10.7498/aps.39.98
    [19] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应. 物理学报, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
    [20] 朱斌, 王大志, 俞文海. 蒙脱石固体电解质的高价离子导电性. 物理学报, 1988, 37(8): 1307-1314. doi: 10.7498/aps.37.1307
计量
  • 文章访问数:  17526
  • PDF下载量:  992
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-11-09
  • 上网日期:  2020-12-02
  • 刊出日期:  2020-11-20

/

返回文章
返回