搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生

田康振 胡永胜 任和 祁思胜 杨安平 冯宪 杨志勇

引用本文:
Citation:

高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生

田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇

Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation

Tian Kang-Zhen, Hu Yong-Sheng, Ren He, Qi Si-Sheng, Yang An-Ping, Feng Xian, Yang Zhi-Yong
PDF
HTML
导出引用
  • 测量了Ge-As-S系列硫系玻璃在中红外波段的飞秒激光损伤阈值, 研究了它与玻璃化学组成的关系. 基于优化的玻璃组成, 采用棒管法制备了芯径为15 μm的阶跃折射率非线性光纤. 采用飞秒脉冲抽运光纤, 研究了光纤中超连续谱(supercontinuum, SC)的产生特性. 在研究的Ge-As-S硫系玻璃中, 具有化学计量配比的Ge0.25As0.1S0.65玻璃显示出最高的激光损伤阈值. 以该玻璃作为纤芯材料、以与其相匹配的Ge0.26As0.08S0.66玻璃作为包层材料制备的光纤的数值孔径约为0.24, 背景损耗 < 2 dB/m. 采用4.8 μm的飞秒激光抽运长度为10 cm的光纤, 获得了覆盖2.5—7.5 μm的SC. 这些结果表明, Ge-As-S硫系玻璃光纤是一种有潜力的中红外高亮度宽带SC产生的非线性介质.
    High-brightness broadband mid-infrared supercontinuum sources are highly demanded for many applications such as remote sensing, environmental monitoring, manufacturing industry, medical surgery and thermal imaging. For fulfilling these applications, high average power output is required. Compared with all other mid-infrared glass fibers, chalcogenide glass fiber possesses low phonon energy, long wavelength transmission edge, and high Kerr nonlinearity, thereby becoming a uniquely ideal nonlinear optical material for generating broadband mid-infrared supercontinuum. Unfortunately, due to weak chemical bonds forming the glass network, the commonly used As-S chalcogenide glass has a relatively low laser damage threshold. Thus from the material aspect, it limits high power yielded from a chalcogenide fiber based mid-infrared supercontinuum source. A chalcogenide glass host with enhanced laser damage threshold is therefore needed for further power scaling up of such a mid-infrared fiber supercontinuum. In this work, we introduce germanium into a traditional As-S glass system. The laser damage threshold of Ge-As-S glass is investigated systematically. A 3.6-μm femtosecond laser is employed as an excitation source. The relationship between the laser damage threshold and the glass composition indicates that of the studied Ge-As-S chalcogenide glasses, stoichiometric Ge0.25As0.1S0.65 glass possesses the highest laser damage threshold.In the following fiber design and fabrication, the optimized stoichiometric Ge0.25As0.1S0.65 glass therefore is chosen as a core material of the designed fiber, while a compatible Ge0.26As0.08S0.66 glass is selected as a cladding material. A step-index nonlinear fiber with a core diameter of 15 μm is fabricated by the traditional rod-in-tube method. The numerical aperture and the background loss of the fabricated Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber are ~0.24 and < 2 dB/m, respectively.Broadband mid-infrared supercontinuum is generated in the fiber by using an anomalous-dispersion pumping scheme. A 4.8-μm femtosecond laser with a pulse duration of 170 femtosecond and a repetition rate of 100 kHz is adopted as a pump source. The guidance of the fundamental mode is confirmed under low pump power level. With the increase of the pump power, the supercontinuum shows to be significantly broadened. Broadband supercontinuum ranging from 2.5 μm to 7.5 μm is generated in an only 10-cm-long fiber, when the maximum coupled pump power is 15 mW, equivalent to a peak power of 882 kW. The power output of the supercontinuum is 5.5 mW.All in all, the results indicate that the Ge-As-S chalcogenide glass fiber is a promising nonlinear medium for broadband mid-infrared supercontinuum sources with high brightness.
      通信作者: 冯宪, xianfeng@jsnu.edu.cn ; 杨志勇, yangzhiyong@jsnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805109, 61575086)、江苏省自然科学基金青年基金项目(批准号: BK20170229)和江苏省高等学校自然科学研究面上项目(批准号: 18KJB180004)资助的课题
      Corresponding author: Feng Xian, xianfeng@jsnu.edu.cn ; Yang Zhi-Yong, yangzhiyong@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805109, 61575086), the Natural Science Foundation of Jiangsu Province (Grant No. BK20170229), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 18KJB180004)
    [1]

    Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [2]

    Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958

    [3]

    Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar

    [4]

    Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar

    [5]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar

    [6]

    Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar

    [7]

    Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar

    [8]

    Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar

    [9]

    Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar

    [10]

    Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar

    [11]

    Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar

    [12]

    Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [13]

    Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar

    [14]

    Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar

    [15]

    Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar

    [16]

    Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar

    [17]

    Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar

    [18]

    You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497

    [19]

    Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar

    [20]

    Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar

    [21]

    Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar

    [22]

    李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar

    Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar

    [23]

    Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar

    [24]

    Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [25]

    Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar

    [26]

    Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar

    [27]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [28]

    Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar

    [29]

    杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar

    Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar

    [30]

    Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar

    [31]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar

    [32]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar

    [33]

    Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar

    [34]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar

    [36]

    Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar

  • 图 1  SC测试实验装置示意图

    Fig. 1.  Experimental setup for mid-infrared SC measurements

    图 2  Ge-As-S玻璃的Ith与化学组成的关联

    Fig. 2.  Correlation between the Ith and dS of Ge-As-S glasses.

    图 3  Ge-As-S玻璃的 (a) 透过光谱(玻璃厚度为3.7 mm)和 (b) DSC曲线

    Fig. 3.  (a) Transmission spectra and (b) DSC curves of Ge-As-S glasses.

    图 4  Ge-As-S玻璃的线性折射率n0及光纤的NA

    Fig. 4.  Measured refractive indices of Ge-As-S glasses and the calculated NA of the fiber.

    图 5  Ge0.25As0.1S0.65玻璃和芯径为15μm的Ge0.25As0.1S0.65/Ge0.26As0.08S0.66光纤的色散曲线

    Fig. 5.  Dispersion curves of Ge0.25As0.1S0.65 glass and Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber with a core diameter of 15 μm.

    图 6  Ge0.25As0.1S0.65/Ge0.26As0.08S0.66玻璃光纤的损耗谱, 插图为光纤的横截面

    Fig. 6.  Attenuation of fabricated Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber. The inset is the cross section of the fiber.

    图 7  (a) Ge-As-S光纤输出光斑; (b) 采用4.8 μm激光(170 fs, 100 kHz)抽运芯径为15 μm的Ge0.25As0.1S0.65/Ge0.26As0.08S0.66玻璃光纤获得的SC输出

    Fig. 7.  (a) Measured light spot at the output end of the Ge-As-S fiber; (b) Measured SC generated in the Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber with a core diameter of 15 µm when pumped at 4.8 µm (170 fs, 100 kHz).

    表 1  Ge-As-S玻璃在中心波长为3.6 μm、脉冲宽度为170 fs、重复频率为100 kHz激光辐照下的Ith

    Table 1.  Ith of Ge-As-S glasses under the irradiation of 170 fs pulses with the repetition rates of 100 kHz at 3.6 μm.

    CompositiondS /at. %Ith/GW·cm–2
    Ge0.1As0.1S0.845462
    Ge0.15As0.1S0.7530498
    Ge0.1As0.2S0.720550
    Ge0.2As0.1S0.715589
    Ge0.15As0.2S0.655609
    Ge0.25As0.1S0.650638
    Ge0.2As0.2S0.6–10530
    Ge0.3As0.1S0.6–15465
    Ge0.25As0.20S0.55–25425
    Ge0.35As0.1S0.55–30392
    Ge0.3As0.2S0.5–40350
    下载: 导出CSV
  • [1]

    Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [2]

    Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958

    [3]

    Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar

    [4]

    Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar

    [5]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar

    [6]

    Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar

    [7]

    Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar

    [8]

    Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar

    [9]

    Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar

    [10]

    Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar

    [11]

    Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar

    [12]

    Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [13]

    Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar

    [14]

    Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar

    [15]

    Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar

    [16]

    Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar

    [17]

    Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar

    [18]

    You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497

    [19]

    Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar

    [20]

    Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar

    [21]

    Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar

    [22]

    李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar

    Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar

    [23]

    Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar

    [24]

    Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [25]

    Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar

    [26]

    Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar

    [27]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [28]

    Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar

    [29]

    杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar

    Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar

    [30]

    Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar

    [31]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar

    [32]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar

    [33]

    Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar

    [34]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar

    [36]

    Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar

  • [1] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [2] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [3] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [4] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [5] 王威彬, 杨华, 唐平华, 韩芳. 光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究. 物理学报, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [6] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [7] 李建锋, 周桂耀, 侯蓝田. 光子晶体光纤超连续谱的孤子俘获数值研究. 物理学报, 2012, 61(12): 124203. doi: 10.7498/aps.61.124203
    [8] 宋锐, 侯静, 陈胜平, 王彦斌, 陆启生. 177.6 W全光纤超连续谱光源. 物理学报, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [9] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [10] 刘昆陇, 洪伟毅, 王少义, 张庆斌, 陆培祥. 中红外偏振态门驱动产生高效的极宽超连续谱. 物理学报, 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [11] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [12] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [13] 张丽平, 李海宁, 吴 洪, 李 贤, 丁良恩. Ar气中超连续谱产生的研究. 物理学报, 2008, 57(2): 904-908. doi: 10.7498/aps.57.904
    [14] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [15] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [16] 陈泳竹, 李玉忠, 屈 圭, 徐文成. 反常色散平坦光纤产生平坦宽带超连续谱的数值研究. 物理学报, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [17] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [18] 刘卫华, 王屹山, 刘红军, 段作梁, 赵 卫, 李永放, 彭钦军, 许祖彦. 初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响. 物理学报, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [19] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [20] 李曙光, 冀玉领, 周桂耀, 侯蓝田, 王清月, 胡明列, 栗岩峰, 魏志义, 张 军, 刘晓东. 多孔微结构光纤中飞秒激光脉冲超连续谱的产生. 物理学报, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
计量
  • 文章访问数:  6392
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-28
  • 上网日期:  2021-02-02
  • 刊出日期:  2021-02-20

/

返回文章
返回