-
大口径氘化磷酸二氢钾(DKDP)晶体抗激光损伤性能偏低严重地制约着大型高功率激光装置输出水平. 本研究利用离线亚纳秒激光预处理技术有效地提升了大口径DKDP晶体抗激光损伤性能. 实际使用情况表明, 采用离线亚纳秒激光预处理后, DKDP晶体在9 J/cm2激光通量辐照下的表面平均损伤密度得到大幅下降, 由未处理前的5.02 pp/cm2 (1pp表示1个百分点)降至0.55 pp/cm2, 降幅为一个数量级. 同时, 激光预处理对晶体损伤尺寸具有一定的抑制作用, 预处理后晶体损伤点尺寸分布曲线向尺寸减小的方向平移, 尺寸分布峰值由预处理前的25 μm降至预处理后的18—20 μm.The large aperture deuterated potassium dihydrogen phosphate (DKDP) is an important frequency conversion crystal in a large power laser device. There are many defects inside the DKDP bulk material, including the varying element impurities and electronic defects. Comparing with the defect-free material, these bulk defects can easily absorb incident laser energy and pose the risks of initiating damage sites when exposed to high-energy lasers. Beside bulk defects, there are surface defects originating from the DKDP machining process, including cracks, scratches and protuberances. These surface defects affect the damage performance of DKDP crystal by increasing light absorption and weakening local mechanical strength. Due to the defects from both bulk and surface, the actual damage threshold of DKDP crystal is much lower than the expected theoretical value. The lack of its laser damage resistance seriously restricts the laser output power. In this study, the off-line sub-nanosecond laser conditioning technology is proposed to effectively improve the laser damage performance of large aperture DKDP crystal. Its principle is to irradiate DKDP with a mild laser fluence in advance. Although the laser pretreatment cannot directly eliminate the impurities, dislocations, grain boundaries or other macro structural defects in crystals, it indeed changes the distribution and density of intrinsic point defects on a micro-scale. It suggests that the complicated reactions of electron-hole, atom-vacancy and the intrinsic point defect annihilation caused by the microstructural transformation of crystal materials under laser conditioning are the possible reasons for reducing absorption and improving the damage resistance. In this experiment, the result of the damage to high-power laser device shows that the mean surface damage density of DKDP crystal at 9 J/cm2 decreases from 5.02 pp/cm2 to 0.55 pp/cm2 after sub-nanosecond laser conditioning. The laser conditioning can remove the protuberance defects on the surface, thus reducing the surface damage density. In addition, the damage size probably decreases after laser conditioning. There is a leftward shift in the damage size curve after laser conditioning, and its peak decreases from 25 μm to 18 μm–20 μm. In addition, due to the removal effect of laser conditioning on defects, the spatial distribution of damage points after sub-nanosecond laser irradiation turns more uniform. This study provides a foundation for the applications of off-line sub-nanosecond laser conditioning technology in high-power laser facility.
-
Keywords:
- deuterated potassium dihydrogen phosphate crystal /
- laser conditioning /
- laser induced damage /
- high-power laser
[1] De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar
[2] Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar
[3] Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505
[4] Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar
[5] Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar
[6] Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar
[7] Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar
[8] Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar
[9] Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133
[10] Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar
[11] Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar
[12] DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar
[13] Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L
[14] Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374
[15] Duchateau G 2009 Opt. Express 17 10434Google Scholar
[16] Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M
[17] Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar
[18] Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K
[19] 赵元安 2016 光学精密工程 24 2938Google Scholar
Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar
[20] 王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183
Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183
[21] Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar
[22] Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar
[23] Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238
[24] Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K
[25] Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar
[26] Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332
[27] Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar
[28] Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar
-
图 2 大口径DKDP晶体元件在9 J/cm2通量辐照后的损伤点暗场图 (a)全口径暗场图; (b)跨越预处理分界线的损伤点; (b1)表面损伤显微图; (b2)体损伤散射图; (c)大尺寸体损伤点; (d)大尺寸表面损伤点
Fig. 2. The damage sites micrograph under dark field of large aperture DKDP crystal at 9 J/cm2: (a) Full-aperture image; (b) the damage site located at laser conditioning boundary; (b1) zoom in on surface damage site; (b2)zoom in on bulk damage site; (c) big size bulk damage; (d) big size surface damage.
-
[1] De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar
[2] Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar
[3] Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505
[4] Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar
[5] Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar
[6] Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar
[7] Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar
[8] Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar
[9] Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133
[10] Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar
[11] Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar
[12] DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar
[13] Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L
[14] Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374
[15] Duchateau G 2009 Opt. Express 17 10434Google Scholar
[16] Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M
[17] Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar
[18] Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K
[19] 赵元安 2016 光学精密工程 24 2938Google Scholar
Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar
[20] 王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183
Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183
[21] Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar
[22] Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar
[23] Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238
[24] Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K
[25] Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar
[26] Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332
[27] Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar
[28] Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar
计量
- 文章访问数: 4690
- PDF下载量: 73
- 被引次数: 0