搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术

刘志超 许乔 雷向阳 耿锋 王翔峰 张帅 王健 张清华 刘民才

引用本文:
Citation:

大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术

刘志超, 许乔, 雷向阳, 耿锋, 王翔峰, 张帅, 王健, 张清华, 刘民才

Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal

Liu Zhi-Chao, Xu Qiao, Lei Xiang-Yang, Geng Feng, Wang Xiang-Feng, Zhang Shuai, Wang Jian, Zhang Qing-Hua, Liu Min-Cai
PDF
HTML
导出引用
  • 大口径氘化磷酸二氢钾(DKDP)晶体抗激光损伤性能偏低严重地制约着大型高功率激光装置输出水平. 本研究利用离线亚纳秒激光预处理技术有效地提升了大口径DKDP晶体抗激光损伤性能. 实际使用情况表明, 采用离线亚纳秒激光预处理后, DKDP晶体在9 J/cm2激光通量辐照下的表面平均损伤密度得到大幅下降, 由未处理前的5.02 pp/cm2 (1pp表示1个百分点)降至0.55 pp/cm2, 降幅为一个数量级. 同时, 激光预处理对晶体损伤尺寸具有一定的抑制作用, 预处理后晶体损伤点尺寸分布曲线向尺寸减小的方向平移, 尺寸分布峰值由预处理前的25 μm降至预处理后的18—20 μm.
    The large aperture deuterated potassium dihydrogen phosphate (DKDP) is an important frequency conversion crystal in a large power laser device. There are many defects inside the DKDP bulk material, including the varying element impurities and electronic defects. Comparing with the defect-free material, these bulk defects can easily absorb incident laser energy and pose the risks of initiating damage sites when exposed to high-energy lasers. Beside bulk defects, there are surface defects originating from the DKDP machining process, including cracks, scratches and protuberances. These surface defects affect the damage performance of DKDP crystal by increasing light absorption and weakening local mechanical strength. Due to the defects from both bulk and surface, the actual damage threshold of DKDP crystal is much lower than the expected theoretical value. The lack of its laser damage resistance seriously restricts the laser output power. In this study, the off-line sub-nanosecond laser conditioning technology is proposed to effectively improve the laser damage performance of large aperture DKDP crystal. Its principle is to irradiate DKDP with a mild laser fluence in advance. Although the laser pretreatment cannot directly eliminate the impurities, dislocations, grain boundaries or other macro structural defects in crystals, it indeed changes the distribution and density of intrinsic point defects on a micro-scale. It suggests that the complicated reactions of electron-hole, atom-vacancy and the intrinsic point defect annihilation caused by the microstructural transformation of crystal materials under laser conditioning are the possible reasons for reducing absorption and improving the damage resistance. In this experiment, the result of the damage to high-power laser device shows that the mean surface damage density of DKDP crystal at 9 J/cm2 decreases from 5.02 pp/cm2 to 0.55 pp/cm2 after sub-nanosecond laser conditioning. The laser conditioning can remove the protuberance defects on the surface, thus reducing the surface damage density. In addition, the damage size probably decreases after laser conditioning. There is a leftward shift in the damage size curve after laser conditioning, and its peak decreases from 25 μm to 18 μm–20 μm. In addition, due to the removal effect of laser conditioning on defects, the spatial distribution of damage points after sub-nanosecond laser irradiation turns more uniform. This study provides a foundation for the applications of off-line sub-nanosecond laser conditioning technology in high-power laser facility.
      通信作者: 许乔, xuq_rclf@163.com
      Corresponding author: Xu Qiao, xuq_rclf@163.com
    [1]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [2]

    Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar

    [3]

    Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505

    [4]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar

    [5]

    Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar

    [6]

    Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar

    [7]

    Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar

    [8]

    Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar

    [9]

    Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133

    [10]

    Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar

    [11]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar

    [12]

    DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar

    [13]

    Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L

    [14]

    Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374

    [15]

    Duchateau G 2009 Opt. Express 17 10434Google Scholar

    [16]

    Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M

    [17]

    Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar

    [18]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K

    [19]

    赵元安 2016 光学精密工程 24 2938Google Scholar

    Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar

    [20]

    王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183

    Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183

    [21]

    Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar

    [22]

    Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar

    [23]

    Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238

    [24]

    Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K

    [25]

    Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar

    [26]

    Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332

    [27]

    Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar

    [28]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar

  • 图 1  大口径DKDP晶体离线亚纳秒激光预处理装置示意图

    Fig. 1.  Schematic diagram of off-line sub-nanosecond laser conditioning device for large aperture DKDP crystal.

    图 2  大口径DKDP晶体元件在9 J/cm2通量辐照后的损伤点暗场图 (a)全口径暗场图; (b)跨越预处理分界线的损伤点; (b1)表面损伤显微图; (b2)体损伤散射图; (c)大尺寸体损伤点; (d)大尺寸表面损伤点

    Fig. 2.  The damage sites micrograph under dark field of large aperture DKDP crystal at 9 J/cm2: (a) Full-aperture image; (b) the damage site located at laser conditioning boundary; (b1) zoom in on surface damage site; (b2)zoom in on bulk damage site; (c) big size bulk damage; (d) big size surface damage.

    图 3  入射面的损伤点分布示意图 (a)和损伤密度分布曲线(b)

    Fig. 3.  The diagram of damage point distribution (a) and damage density curve (b) on the incident side.

    图 4  出射面的损伤点分布示意图 (a)和损伤密度分布曲线(b)

    Fig. 4.  The diagram of damage point distribution (a) and damage density curve (b) on the exit side.

    图 5  经过 (a)和未经过(b)激光预处理的凸起压入点缺陷的损伤差异

    Fig. 5.  Comparison of DKDP surface damage induced by protuberance defects with (a) and without(b) laser conditioning.

    图 6  预处理前后体损伤密度随激光能量密度变化曲线对比

    Fig. 6.  Comparison of damage density curves with and without laser conditioning.

  • [1]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int. Mater. Rev. 47 113Google Scholar

    [2]

    Burnham A K, Runkel M, Feit M D, Rubenchik A M, Floyd R L, Land T A, Siekhaus W J, Hawley-Fedder R A 2003 Appl. Opt. 42 5483Google Scholar

    [3]

    Liu C S, Kioussis N, Demos S G, Radousky H B 2005 Phys. Rev. Lett. 91 015505

    [4]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401Google Scholar

    [5]

    Demos S G, DeMange P, Negres R A, Feit M D 2010 Opt. Express 18 13788Google Scholar

    [6]

    Wang S F, Wang J, Xu Q, Lei X Y, Liu Z C, Zhang J F 2018 Appl. Opt. 57 2638Google Scholar

    [7]

    Chen M J, Li M Q, An C H, Zhou L, Cheng J, Xiao Y, Jiang W 2013 Jpn. J. Appl. Phys. 52 032701Google Scholar

    [8]

    Cheng J, Chen M J, Liao W, Wang H J, Wang J H, Xiao Y, Li M Q 2014 Opt. Express 22 28740Google Scholar

    [9]

    Han W, Zhou L D, Xiang Y, Tian Y, Gong M L 2016 Chin. Phys. Lett. 33 133

    [10]

    Manes K R, Spaeth M L, Adams J J, Bowers M W, Bude J D, Carr C W 2016 Fusion Sci. Technol. 69 146Google Scholar

    [11]

    Swain J, Stokowski S, Milam D, Rainer F 1982 Appl. Phys. Lett. 41 350Google Scholar

    [12]

    DeMange P, Carr C W, Negres R A, Radousky H B, Demos S G 2005 Opt. Lett. 30 221Google Scholar

    [13]

    Zhao Y A, Hu G H, Shao J D, Liu X F, He H B, Fan Z X 2009 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 21–23, 2009 p75041 L

    [14]

    Feit M D, Rubenchik A M 2003 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 22–24, 2003 p527374

    [15]

    Duchateau G 2009 Opt. Express 17 10434Google Scholar

    [16]

    Adams J J, Jarboe J A, Carr C W, Feit M D, Hackel R P, Halpin J M, Honig J, Lane L A, Luthi R L, Peterson J E, Ravizza D L, Ravizza F L, Rubenchik A M, Sell W D, Vickers J L, Weiland T L, Wennberg T J, Willard D A, Yeoman M F 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64031M

    [17]

    Demange P, Negres R A, Carr C W, Radousky H B, Demos S G 2006 Opt. Express 14 5313Google Scholar

    [18]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proceedings of the Laser-Induced Damage in Optical Materials Boulder, USA, September 25–27, 2007 p64030K

    [19]

    赵元安 2016 光学精密工程 24 2938Google Scholar

    Zhao Y A 2016 Opt. Precis. Eng. 24 2938Google Scholar

    [20]

    王凤蕊, 李青芝, 郭德成, 黄进, 耿锋 2017 红外与激光工程 46 183

    Wang F R, Li Q Z, Guo D C, Huang J, Geng F 2017 Infrared Laser Eng. 46 183

    [21]

    Peng X C, Zhao Y A, Wang Y L, Hu G H, Yang L J, Shao J D 2018 Chin. Opt. Lett. 16 051601Google Scholar

    [22]

    Liu Z C, Geng F, Lei X Y, Li Y G, Cheng J, Zheng Y, Wang J, Xu Q 2020 Appl. Opt. 59 5240Google Scholar

    [23]

    Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Zu X T 2014 Adv. Condens. Matter Phys. 2014 238

    [24]

    Pommiès M, Damiani D, Bertussi B, Capoulade J, Natoli J Y, Piombini H, Mathis H 2005 Proceedings of Optical Fabrication, Testing, and Metrology II Jena, Germany, September 12–16, 2005 p59651K

    [25]

    Liu Z C, Geng F, Li Y G, Cheng J, Yang H, Zheng Y, Wang J, Xu Q 2018 Appl. Opt. 57 10334Google Scholar

    [26]

    Hu G H, Zhao Y A, Sun S T, Li D W, Liu X F, Sun X, Shao J D, Fan Z X 2009 Chin. Phys. Lett. 26 332

    [27]

    Bertussi B, Piombini H, Damiani D, Pommies M, Borgne X L, Plessis D 2006 Appl. Opt. 45 8506Google Scholar

    [28]

    Duchateau G, Geoffroy G, Belsky A, Fedorov N, Martin P, Guizard S 2013 J. Phys. Condens. Matter 25 435501Google Scholar

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器. 物理学报, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [3] 安然, 范小贞, 卢建新, 文侨. 高光束质量、高功率稳定性激光器的设计及实验研究. 物理学报, 2018, 67(7): 074201. doi: 10.7498/aps.67.20171932
    [4] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [5] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [6] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟. 物理学报, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [7] 杨未强, 侯静, 宋锐, 刘泽金. 高功率光纤激光器二级抽运技术的理论分析. 物理学报, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [8] 王坤鹏, 闫石. 不同荷电态替位缺陷Sp对磷酸二氢钾激光损伤的影响. 物理学报, 2011, 60(9): 097401. doi: 10.7498/aps.60.097401
    [9] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [10] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [11] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究. 物理学报, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [12] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [13] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究. 物理学报, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [14] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [15] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [16] 赵兴海, 高 杨, 徐美健, 段文涛, 於海武. 纳秒激光诱导石英光纤端面损伤特性研究. 物理学报, 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [17] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [18] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究. 物理学报, 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [19] 陈建文, 傅淑芬, 刘妙宏. 高功率、高效率放电激励XeBr激光器. 物理学报, 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 殷光裕, 何兴法. 六束高功率钕玻璃激光器. 物理学报, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
计量
  • 文章访问数:  4690
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-13
  • 修回日期:  2021-01-05
  • 上网日期:  2021-03-29
  • 刊出日期:  2021-04-05

/

返回文章
返回