搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强度调制532 nm激光水下测距

李坤 杨苏辉 廖英琦 林学彤 王欣 张金英 李卓

引用本文:
Citation:

强度调制532 nm激光水下测距

李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓

Underwater ranging with intensity modulated 532 nm laser source

Li Kun, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong, Wang Xin, Zhang Jin-Ying, Li Zhuo
PDF
HTML
导出引用
  • 激光水下探测在水下目标搜寻、资源勘探等领域具有重要的应用, 而散射是激光水下探测面临的主要挑战. 载波调制激光雷达具有抗散射、抗干扰的优点, 本文利用自行研制的532 nm强度调制激光源, 在3 m长的水箱中搭建激光水下探测系统. 532 nm激光源最大输出功率为2.56 W, 强度调制范围为10.0 MHz—2.1 GHz, 光束发散角约0.5 mrad. 通过在水箱中添加氢氧化镁(Mg(OH)2)粉末, 测量了不同浑浊度下水的衰减系数. 采用相位测距的方法, 目标反射光的调制信号为探测信号, 对激光源进行调制的电信号作为参考信号, 利用相关运算获得激光的延时时间, 进而可以获得水下目标的距离. 最大调制频率为500 MHz时, 实现了距离为4.3个衰减长度目标的探测, 测距误差约12 cm. 探测距离越远, 测距误差越大, 调制频率越高, 测距精度越高.
    Laser underwater detection has important applications in underwater target search, resource exploration, and other fields. The absorption and scattering of light by water are a big challenge to underwater detection. Absorption causes the laser signal to attenuate, thus limiting the detection distance. Scattering causes not only attenuation but also noise, the strong scattering noise can even submerge the target information. To reduce the absorption, the blue-green light band in the transmission window of water is chosen for lidar. Optically carried microwave radar (OCMR) has the advantages of resistance to turbulence and scattering. The intensity of the detection beam is modulated at radio frequency. The photons reflected by the target retain the intensity modulation information, while interference phase-out is generated between photons scattered by particles suspending in turbid water at different distances, resulting in the average of high-frequency modulation signals. The signal-to-noise ratio is improved when the received signal by the detector is correlated with the modulation signal. High-power broadband intensity modulated light source is the key to achieving the long-distance, high-precision underwater ranging with the carrier modulation method. However, the carrier modulation technology for underwater detection is limited by the development of light source. The maximum power of intensity modulation green light used in underwater detection is on the order of hundreds of milliwatts, the receiver needs to adopt a photomultiplier tube (PMT).In this paper, a laser underwater detection system is built with a 3-m-long water tank by using a home-made 532 nm light source. The maximum output power of the intensity-modulated 532 nm laser is 2.56 W. The modulation frequency is turned from 10 MHz to 2.1 GHz. Water with different attenuation coefficients is obtained by adding Mg(OH)2 into the water tank. When the maximum modulation frequency is 500 MHz by phase ranging, 4.3 attenuation lengths(a.l.) are measured. The ranging error is about 12 cm. In the future study, a PMT will be used as the detector to increase the range resolution. We will also increase the bandwidth of the signal processing unit in order to take full advantage of the broadband intensity to modulate light source.
      通信作者: 杨苏辉, suhuiyang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61835001, 61875011)资助的课题
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835001, 61875011)
    [1]

    Jaffe J S 2015 IEEE J. Oceanic Eng. 40 683Google Scholar

    [2]

    Busck J 2005 Opt. Eng. 44 16001Google Scholar

    [3]

    Austin J, William J, Alan L, Linda M, Brandon C 2018 Opt. Express 26 2668Google Scholar

    [4]

    Laux A, Mullen L, Perez P, Zege E 2012 Proceedings of SPIE on Ocean Sensing and Monitoring Baltimore, USA, April 23, 2012 p8372

    [5]

    Haltrin V I 1998 Appl. Opt. 37 3773Google Scholar

    [6]

    Duntley S Q 1963 J. Opt. Soc. Am. 53 214Google Scholar

    [7]

    Mullen L J, Contarino V M 2002 IEEE Microwave Mag. 1 42

    [8]

    Illig D W, Rumbaugh L, Jemison W D, Alan L, Linda M 2014 Proceedings of IEEE International Conference on Oceans IV St. John's, Canada, September 14–19, 2014 p7003086

    [9]

    O'Connor S, Lee R, Mullen L, Cochenour B 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110P

    [10]

    Illig D W, Laux A, Lee R W, Jemison W D, Mullen L J 2015 Proceedings of SPIE on Ocean Sensing and Monitoring VII Baltimore, USA, April 20–24, 2015 p94590B

    [11]

    张洪敏, 荣健, 李涛, 田磊, 汤林, 梁国栋 2011 红外与激光工程 40 2408Google Scholar

    Zhang H M, Rong J, Li T, Tian L, Tang L, Liang G D 2011 Infrared Laser Eng. 40 2408Google Scholar

    [12]

    Illig D W, Jemison W D, Lee R W, Lauxb A, Mullenet L 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110R

    [13]

    张明涛, 张建忠, 张建国, 徐航, 张明江, 王安帮, 王云才 2016 激光与光电子学进展 53 051402Google Scholar

    Zhang M T, Zhang J Z, Zhang J G, Xu H, Zhang M J, Wang A B, Wang Y C 2016 Laser Optoelect. Prog. 53 051402Google Scholar

    [14]

    沈振民, 尚卫东, 王冰洁, 赵彤, 张海洋, 郑永超, 周国清 2020 光子学报 49 0601001Google Scholar

    Shen Z M, Shang W D, Wang B J, Zhao T, Zhang H Y, Zheng Y C, Zhou G Y 2020 Acta Photonica Sin. 49 0601001Google Scholar

    [15]

    戴永江 2010 激光雷达技术 (下册) (北京: 电子工业出版社) 第586—588页

    Dai Y J 2010 Lidar Technology (Vol. 2) (Beijing: Electronic Industry Press) pp586–588 (in Chinese)

    [16]

    宋宏, 张云菲, 吴超鹏, 申屠溢醇, 吴超钒, 郭乙陆, 黄慧, 司玉林, 杨萍, 全向前 2019 红外与激光工程 48 0406008Google Scholar

    Song H, Zhang Y F, Wu C P, S Y C, Wu C F, Guo Y L, Huang H, Si Y L, Yang P, Quan X Q 2019 Infrared Laser Eng. 48 0406008Google Scholar

    [17]

    刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004Google Scholar

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Las. 39 0208004Google Scholar

    [18]

    姜成昊, 杨进华, 张丽娟, 王晓坤 2014 光子学报 43 0912006Google Scholar

    Jiang C H, Yang J H, Zhang L J, Wang X K 2014 Acta Photonica Sin. 43 0912006Google Scholar

    [19]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [20]

    章正宇, 眭晓林 2002 中国激光 29 661Google Scholar

    Zhang Z Y, Sui X L 2002 Chin. J. Las. 29 661Google Scholar

    [21]

    刘颖, 吕彦东, 孙志成, 张娜 付庆勇 2019 遥测遥控 40 56Google Scholar

    Liu Y, Lv Y D, Sun Z C, Zhang N, Fu Q Y 2019 J. Telemetry Tracking Command 40 56Google Scholar

  • 图 1  激光水下探测系统

    Fig. 1.  Experimental setup of underwater ranging.

    图 2  回波信号和参考信号的波形及相关运算结果 (a), (c) 0和0.5 m处的波形; (b), (d) 0和0.5 m处的相关结果

    Fig. 2.  Waveform of echo signal and reference signal, results of correlation calculation: (a), (c) Waveform at 0 and 0.5 m; (b), (d) results of correlation calculation at 0 and 0.5 m.

    图 3  不同距离的测距结果及误差(c = 0.99 m–1) (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) 测距误差

    Fig. 3.  Ranging results and errors at different distances (c = 0.99 m–1): (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) ranging error.

    图 4  不同距离的测距结果及误差 (c = 1.72 m–1) (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) 测距误差

    Fig. 4.  Ranging results and errors at different distances (c = 1.72 m–1): (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) ranging error.

    图 5  相位法测距结果

    Fig. 5.  Ranging results based on phase.

    表 1  不同水体的衰减系数

    Table 1.  Attenuation coefficient of different water.

    样本目标距
    离/m
    回波信号
    强度/mW
    衰减系
    数/m–1
    平均衰减
    系数/m–1
    101600.99
    0.50600.98
    1.00220.99
    1.5081.00
    202611.72
    0.50471.71
    0.80171.71
    1.0081.74
    302162.97
    0.20682.89
    0.30353.03
    0.50112.98
    402304.03
    0.20473.97
    0.25304.07
    0.4094.05
    下载: 导出CSV
  • [1]

    Jaffe J S 2015 IEEE J. Oceanic Eng. 40 683Google Scholar

    [2]

    Busck J 2005 Opt. Eng. 44 16001Google Scholar

    [3]

    Austin J, William J, Alan L, Linda M, Brandon C 2018 Opt. Express 26 2668Google Scholar

    [4]

    Laux A, Mullen L, Perez P, Zege E 2012 Proceedings of SPIE on Ocean Sensing and Monitoring Baltimore, USA, April 23, 2012 p8372

    [5]

    Haltrin V I 1998 Appl. Opt. 37 3773Google Scholar

    [6]

    Duntley S Q 1963 J. Opt. Soc. Am. 53 214Google Scholar

    [7]

    Mullen L J, Contarino V M 2002 IEEE Microwave Mag. 1 42

    [8]

    Illig D W, Rumbaugh L, Jemison W D, Alan L, Linda M 2014 Proceedings of IEEE International Conference on Oceans IV St. John's, Canada, September 14–19, 2014 p7003086

    [9]

    O'Connor S, Lee R, Mullen L, Cochenour B 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110P

    [10]

    Illig D W, Laux A, Lee R W, Jemison W D, Mullen L J 2015 Proceedings of SPIE on Ocean Sensing and Monitoring VII Baltimore, USA, April 20–24, 2015 p94590B

    [11]

    张洪敏, 荣健, 李涛, 田磊, 汤林, 梁国栋 2011 红外与激光工程 40 2408Google Scholar

    Zhang H M, Rong J, Li T, Tian L, Tang L, Liang G D 2011 Infrared Laser Eng. 40 2408Google Scholar

    [12]

    Illig D W, Jemison W D, Lee R W, Lauxb A, Mullenet L 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110R

    [13]

    张明涛, 张建忠, 张建国, 徐航, 张明江, 王安帮, 王云才 2016 激光与光电子学进展 53 051402Google Scholar

    Zhang M T, Zhang J Z, Zhang J G, Xu H, Zhang M J, Wang A B, Wang Y C 2016 Laser Optoelect. Prog. 53 051402Google Scholar

    [14]

    沈振民, 尚卫东, 王冰洁, 赵彤, 张海洋, 郑永超, 周国清 2020 光子学报 49 0601001Google Scholar

    Shen Z M, Shang W D, Wang B J, Zhao T, Zhang H Y, Zheng Y C, Zhou G Y 2020 Acta Photonica Sin. 49 0601001Google Scholar

    [15]

    戴永江 2010 激光雷达技术 (下册) (北京: 电子工业出版社) 第586—588页

    Dai Y J 2010 Lidar Technology (Vol. 2) (Beijing: Electronic Industry Press) pp586–588 (in Chinese)

    [16]

    宋宏, 张云菲, 吴超鹏, 申屠溢醇, 吴超钒, 郭乙陆, 黄慧, 司玉林, 杨萍, 全向前 2019 红外与激光工程 48 0406008Google Scholar

    Song H, Zhang Y F, Wu C P, S Y C, Wu C F, Guo Y L, Huang H, Si Y L, Yang P, Quan X Q 2019 Infrared Laser Eng. 48 0406008Google Scholar

    [17]

    刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004Google Scholar

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Las. 39 0208004Google Scholar

    [18]

    姜成昊, 杨进华, 张丽娟, 王晓坤 2014 光子学报 43 0912006Google Scholar

    Jiang C H, Yang J H, Zhang L J, Wang X K 2014 Acta Photonica Sin. 43 0912006Google Scholar

    [19]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [20]

    章正宇, 眭晓林 2002 中国激光 29 661Google Scholar

    Zhang Z Y, Sui X L 2002 Chin. J. Las. 29 661Google Scholar

    [21]

    刘颖, 吕彦东, 孙志成, 张娜 付庆勇 2019 遥测遥控 40 56Google Scholar

    Liu Y, Lv Y D, Sun Z C, Zhang N, Fu Q Y 2019 J. Telemetry Tracking Command 40 56Google Scholar

  • [1] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [3] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率. 物理学报, 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [5] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [6] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响. 物理学报, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [7] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [8] 孙兵兵, 吴博, 王辉, 黄志祥, 吴先良. 基于四能级原子系统模型增益媒质激光原理研究. 物理学报, 2012, 61(22): 220206. doi: 10.7498/aps.61.220206
    [9] 刘宇, 曾燎燎, 路永乐, 刘申, 黄兆靖. 基于稀土掺杂光纤的强度调制型弯曲传感器. 物理学报, 2011, 60(10): 104218. doi: 10.7498/aps.60.104218
    [10] 张永康, 于水生, 姚红兵, 王飞, 任爱国, 裴旭. 强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究. 物理学报, 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [11] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [12] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [13] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [14] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [15] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [16] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [17] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离. 物理学报, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [18] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [19] 李 昆, 张 杰, 余 玮. 激光与固体靶作用产生高次谐波的振荡镜面模型. 物理学报, 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  9235
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 修回日期:  2020-11-10
  • 上网日期:  2021-04-02
  • 刊出日期:  2021-04-20

/

返回文章
返回