搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应

梁德山 黄厚兵 赵亚楠 柳祝红 王浩宇 马星桥

引用本文:
Citation:

拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应

梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥

Size effect of topological charge in disc-like nematic liquid crystal films

Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao
PDF
HTML
导出引用
  • 拓扑现象对于病毒颗粒的空间分布、高分子聚合物纳米囊泡的成型以及玻色-爱因斯坦凝聚物等方面都发挥着重要作用. 本文利用Landau-de Gennes理论, 构建模型来模拟液晶中拓扑荷分布及其他现象. 通过对数值模型序参量场的演化, 以及模拟液晶薄膜中所生成的拓扑荷之间的相互作用来分析液晶(Lqc)薄膜的尺寸对拓扑荷的影响. 研究结果表明,随着液晶盘半径增大, 拓扑荷间最优距离与半径之比渐增并趋于稳定. 此研究结论对利用拓扑荷凝聚颗粒物效应设计分离容器有指导意义, 有助于进一步理解拓扑胶体和液晶以及液晶共聚物等软物质中的拓扑现象.
    Algebraic topology, algebraic geometry, and category theory are new branches of mathematics that have developed in the last hundred years and have had profound collisions with modern physics in recent decades. A large number of topological phenomena are found in systems such as viruses, bacteria, fingerprints, fish school, typhoons, and the galaxies. Topological phenomena play a significant role in the spatial distribution of viral particles, the formation of nanovesicles of polymer, and Bose-Einstein condensates. In this paper, based on Landau-de Gennes theory, models have been constructed to simulate the topological charge distribution and other topological phenomena in liquid crystals. The research indicates that as the radius of the liquid crystal panel grows, the ratio of the optimal distance between the topological charge to the radius gradually increases and tends to stabilize. The size of the disc affects the equilibrium position of the topological load. The relative equilibrium position of topological load is between 0.542 and 0.558, in which the ratio of the distance between the two +1/2 topological loads in the 0–5 mm disc increases from 0.542 to 0.558, and then in the 5–12 mm section the ratio is almost stable at 0.558. As the size of the disc increases, the influence of the boundary anchoring energy decreases, and the equilibrium position, i.e. the distance between the two topological charges and the diameter of the disc, approaches a constant value. This equilibrium position is the result of the repulsive force of the disc boundary on the +1/2 topological load and the repulsive force between the two topological loads. The angle between two topological charges in a liquid crystal disc is between 140° and 180°. The trajectory of the topological charge is the process of finding the lowest free energy point, and the end of the trajectory is in the region of minimum free energy. The result is instructive significance in the design of classification containers by using topological charge condensate effect. And it is helpful to further understand the topological phenomena in soft materials including topological colloids, liquid crystals, and liquid crystal copolymers.
      通信作者: 马星桥, xqma@sas.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174030, 51271157, 11504020)资助的课题
      Corresponding author: Ma Xing-Qiao, xqma@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174030, 51271157, 11504020)
    [1]

    Crawford G P, Zumer S 1996 Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (CRC Press: Boca Raton) p521

    [2]

    Takeuchi H, Tsubota M 2006 J. Phys. Soc. Jpn. 75 063601Google Scholar

    [3]

    Joyce D D 2000 Compact Manifolds with Special Holonomy (Oxford: Oxford University Press) p395.

    [4]

    Dammone O J, Zacharoudiou I, Dullens R P, Yeomans J M, Lettinga M P, Aarts D G 2012 Phys. Rev. Lett. 109 108303Google Scholar

    [5]

    Duclos G, Adkins R, Banerjee D, Peterson M S E, Varghese M, Kolvin I, Baskaran A, Pelcovits R A, Powers T R, Baskaran A, Toschi F, Hagan M F, Streichan S J, Vitelli V, Beller D A, Dogic Z 2020 Science 367 1120Google Scholar

    [6]

    Manyuhina O V, Lawlor K B, Marchetti M C, Bowick M J 2015 Soft Matter 11 6099Google Scholar

    [7]

    Smalyukh I I, Lansac Y, Clark N A, Trivedi R P 2010 Nat. Mater. 9 139Google Scholar

    [8]

    Senyuk B, Liu Q, He S, Kamien R D, Kusner R B, Lubensky T C, Smalyukh Ⅱ 2013 Nature 493 200Google Scholar

    [9]

    刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽 2012 物理学报 61 114211Google Scholar

    Liu Y J, Sun W M, Liu X Q, Yao L S, Lu X H, Xuan L 2012 Acta Phys. Sin. 61 114211Google Scholar

    [10]

    吕月兰, 尹向宝, 杨月, 刘永军, 苑立波 2017 物理学报 66 154205Google Scholar

    Lü Y L, Yin X B, Yang Y, Liu Y J, Yuan L B 2017 Acta Phys. Sin. 66 154205Google Scholar

    [11]

    Ackerman P J, van de Lagemaat J, Smalyukh Ⅱ 2015 Nat. Commun. 6 6012Google Scholar

    [12]

    Xing X, Shin H, Bowick M J, Yao Z, Jia L, Li M H 2012 Proc. Natl. Acad. Sci. U. S. A 109 5202Google Scholar

    [13]

    Opathalage A, Norton M M, Juniper M P N, Langeslay B, Aghvami S A, Fraden S, Dogic Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4788Google Scholar

    [14]

    Dolganov P V, Cluzeau P, Dolganov V K 2019 Liq. Cryst. Rev. 7 1Google Scholar

    [15]

    Peng C, Lavrentovich O D 2019 Micromachines-Basel 10 02187

    [16]

    Turiv T, Krieger J, Babakhanova G, Yu H, Shiyanovskii S V, Wei Q H, Kim M H, Lavrentovich O D 2020 Sci. Adv. 6 eaaz6485Google Scholar

    [17]

    Giomi L, Kos Z, Ravnik M, Sengupta A 2017 Proc. Natl. Acad. Sci. U. S. A. 11 4

    [18]

    Liu Q, Senyuk B, Tasinkevych M, Smalyukh Ⅱ 2013 Proc. Natl. Acad. Sci. U. S. A. 110 9231Google Scholar

    [19]

    Solodkov N V, Shim J U, Jones J C 2019 Nat. Commun. 10 198Google Scholar

    [20]

    Liang D, Ma X, Liu Z, Jafri H M, Cao G, Huang H, Shi S, Chen L Q 2020 J. Appl. Phys. 128 124701Google Scholar

    [21]

    Tang X, Selinger J V 2017 Soft Matter 13 5481Google Scholar

    [22]

    De Gennes P G, Prost J 1993 The Physics of Liquid Crystals (Vol. 83) (New York: Oxford University Press) p597.

    [23]

    Pelka R, Saito K 2006 Phys. Rev. E 74 041705Google Scholar

    [24]

    Frank F C 1958 Discuss. Faraday Soc. 25 19Google Scholar

    [25]

    Berreman D W, Meiboom S 1984 Phys. Rev. A 30 1955Google Scholar

    [26]

    Longa L, Monselesan D, Trebin H R 1987 Liq. Cryst. 2 769Google Scholar

    [27]

    Inukai T, Miyazawa K 1917 Outline of Development of Nematic Liquid Crystal Compounds for LCD (The Museum: King's Printer for British Columbia) p559.

    [28]

    Fournier J B, Galatola P 2005 Europhys. Lett. 72 403Google Scholar

    [29]

    Duclos G, Erlenkämper C, Joanny J F, Silberzan P 2017 Nat. Phys. 13 58Google Scholar

  • 图 1  (a) 液晶指向矢与空间坐标轴之间夹角的示意图; (b) 液晶圆盘直径D0和两个大小为 $ + {1}/{2} $ 拓扑荷之间距离d的示意图, 红色标记表示 $ + {1}/{2} $ 拓扑荷

    Fig. 1.  (a) Schematic of the angle between director of liquid crystal and the spatial axis; (b) schematic of the NLqc disc diameter D0 and d the distance between two topological charges, $ + {1}/{2} $ topological charges represented by red markers.

    图 2  (a) 直径分别为0.4−12 mm圆盘中液晶薄膜自由能随中心两个拓扑荷的间距变化曲线; (b) 两个拓扑荷的最优位置随液晶圆盘直径变化的趋势图

    Fig. 2.  (a) The free energy of liquid crystal film in a disk with diameters ranging from 0.4 mm to 12 mm as a function of the distance between the two topological charges; (b) the trend of the optimal position of the two topological charges as a function of the diameter of the liquid crystal disk.

    图 3  (a)−(d)偏光镜图片 (a), (b) 圆盘直径为0.4和 12 mm时得到的平衡位置POM图; (c), (d)计算模拟的接近最终平衡位置的偏光显微镜图片. (e) 自由能随角度和位置变化的分布图

    Fig. 3.  (a)−(d) are polarizing optical microscope images: (a), (b) are POM images of the optimal positions for disk diameters of 0.4 and 12 mm, respectively; (c), (d) POM images of a near-final optimal position obtained from computational simulation. (e) Free energy as a function of position.

    图 4  十个不同相对位置的拓扑荷演化过程的运动迹图

    Fig. 4.  Motion traces of the topological charges evolution process for 10 different relative positions.

    表 1  5CB(LC 1264)的弹性常数[27]

    Table 1.  Elastic constants of 5CB (LC 1264).

    Constants/N5CB
    $ {k}_{11} $6.70 × 10–12
    $ {k}_{22} $3.60 × 10–12
    $ {{\rm{k}}}_{33} $9.00 × 10–12
    $ {L}_{1} $4.20 × 10–12
    $ {L}_{2} $5.51 × 10–12
    $ {L}_{3} $1.02 × 10–12
    下载: 导出CSV
  • [1]

    Crawford G P, Zumer S 1996 Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (CRC Press: Boca Raton) p521

    [2]

    Takeuchi H, Tsubota M 2006 J. Phys. Soc. Jpn. 75 063601Google Scholar

    [3]

    Joyce D D 2000 Compact Manifolds with Special Holonomy (Oxford: Oxford University Press) p395.

    [4]

    Dammone O J, Zacharoudiou I, Dullens R P, Yeomans J M, Lettinga M P, Aarts D G 2012 Phys. Rev. Lett. 109 108303Google Scholar

    [5]

    Duclos G, Adkins R, Banerjee D, Peterson M S E, Varghese M, Kolvin I, Baskaran A, Pelcovits R A, Powers T R, Baskaran A, Toschi F, Hagan M F, Streichan S J, Vitelli V, Beller D A, Dogic Z 2020 Science 367 1120Google Scholar

    [6]

    Manyuhina O V, Lawlor K B, Marchetti M C, Bowick M J 2015 Soft Matter 11 6099Google Scholar

    [7]

    Smalyukh I I, Lansac Y, Clark N A, Trivedi R P 2010 Nat. Mater. 9 139Google Scholar

    [8]

    Senyuk B, Liu Q, He S, Kamien R D, Kusner R B, Lubensky T C, Smalyukh Ⅱ 2013 Nature 493 200Google Scholar

    [9]

    刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽 2012 物理学报 61 114211Google Scholar

    Liu Y J, Sun W M, Liu X Q, Yao L S, Lu X H, Xuan L 2012 Acta Phys. Sin. 61 114211Google Scholar

    [10]

    吕月兰, 尹向宝, 杨月, 刘永军, 苑立波 2017 物理学报 66 154205Google Scholar

    Lü Y L, Yin X B, Yang Y, Liu Y J, Yuan L B 2017 Acta Phys. Sin. 66 154205Google Scholar

    [11]

    Ackerman P J, van de Lagemaat J, Smalyukh Ⅱ 2015 Nat. Commun. 6 6012Google Scholar

    [12]

    Xing X, Shin H, Bowick M J, Yao Z, Jia L, Li M H 2012 Proc. Natl. Acad. Sci. U. S. A 109 5202Google Scholar

    [13]

    Opathalage A, Norton M M, Juniper M P N, Langeslay B, Aghvami S A, Fraden S, Dogic Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4788Google Scholar

    [14]

    Dolganov P V, Cluzeau P, Dolganov V K 2019 Liq. Cryst. Rev. 7 1Google Scholar

    [15]

    Peng C, Lavrentovich O D 2019 Micromachines-Basel 10 02187

    [16]

    Turiv T, Krieger J, Babakhanova G, Yu H, Shiyanovskii S V, Wei Q H, Kim M H, Lavrentovich O D 2020 Sci. Adv. 6 eaaz6485Google Scholar

    [17]

    Giomi L, Kos Z, Ravnik M, Sengupta A 2017 Proc. Natl. Acad. Sci. U. S. A. 11 4

    [18]

    Liu Q, Senyuk B, Tasinkevych M, Smalyukh Ⅱ 2013 Proc. Natl. Acad. Sci. U. S. A. 110 9231Google Scholar

    [19]

    Solodkov N V, Shim J U, Jones J C 2019 Nat. Commun. 10 198Google Scholar

    [20]

    Liang D, Ma X, Liu Z, Jafri H M, Cao G, Huang H, Shi S, Chen L Q 2020 J. Appl. Phys. 128 124701Google Scholar

    [21]

    Tang X, Selinger J V 2017 Soft Matter 13 5481Google Scholar

    [22]

    De Gennes P G, Prost J 1993 The Physics of Liquid Crystals (Vol. 83) (New York: Oxford University Press) p597.

    [23]

    Pelka R, Saito K 2006 Phys. Rev. E 74 041705Google Scholar

    [24]

    Frank F C 1958 Discuss. Faraday Soc. 25 19Google Scholar

    [25]

    Berreman D W, Meiboom S 1984 Phys. Rev. A 30 1955Google Scholar

    [26]

    Longa L, Monselesan D, Trebin H R 1987 Liq. Cryst. 2 769Google Scholar

    [27]

    Inukai T, Miyazawa K 1917 Outline of Development of Nematic Liquid Crystal Compounds for LCD (The Museum: King's Printer for British Columbia) p559.

    [28]

    Fournier J B, Galatola P 2005 Europhys. Lett. 72 403Google Scholar

    [29]

    Duclos G, Erlenkämper C, Joanny J F, Silberzan P 2017 Nat. Phys. 13 58Google Scholar

  • [1] 王紫凌, 叶家耀, 黄志军, 宋振鹏, 李炳祥, 肖瑞林, 陆延青. 负性向列相液晶电致缺陷的产生与湮灭过程. 物理学报, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [3] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立. 物理学报, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [4] 李腾, 邱文婷, 龚深. 基于相场方法的多孔合金马氏体相变模拟. 物理学报, 2023, 72(14): 148102. doi: 10.7498/aps.72.20230212
    [5] 汪浩然, 张银川, 胡巍, 郭旗. 向列相液晶的饱和非线性及双稳态孤子. 物理学报, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [6] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [7] 吕月兰, 尹向宝, 杨月, 刘永军, 苑立波. 染料掺杂液晶可调谐光纤荧光光源的研究. 物理学报, 2017, 66(15): 154205. doi: 10.7498/aps.66.154205
    [8] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [9] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [10] 刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽. 向列相液晶染料可调谐激光器的研究. 物理学报, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [11] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化. 物理学报, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [12] 唐先柱, 鲁兴海, 彭增辉, 刘永刚, 宣丽. 铁电液晶螺旋结构的理论近似研究. 物理学报, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [13] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟. 物理学报, 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [14] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [15] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [16] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [17] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用. 物理学报, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [18] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [19] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测. 物理学报, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [20] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
计量
  • 文章访问数:  5746
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-10-16
  • 上网日期:  2021-02-08
  • 刊出日期:  2021-02-20

/

返回文章
返回