搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验

徐佳伟 许传喜 张瑞田 朱小龙 冯文天 赵冬梅 梁贵云 郭大龙 高永 张少锋 苏茂根 马新文

引用本文:
Citation:

态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验

徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文

Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model

Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen
PDF
HTML
导出引用
  • 在高温天体等离子体环境中, 低能高电荷态离子与中性原子和分子之间的电荷交换是天体物理环境中软X射线发射的重要机制之一. 电荷交换软X射线发射相关的天体物理建模需要大量的主量子数n和角量子数l分辨的态选择俘获截面数据, 目前这类数据主要来自于经典或者半经典的原子碰撞理论模型. 本文利用反应显微成像谱仪, 系统测量了炮弹能量为1.6—20.0 keV/u Ne8+与He的单电子俘获n分辨的态选择俘获截面. 将测得的相对态选择截面与多通道Landau-Zener方法以及分子库仑过垒模型计算的结果进行比较, 发现理论模型计算结果与实验测量结果在弱反应通道上存在显著差异. 进一步结合天体物理中常用的l分布模型, 计算了1.6和2.4 keV/u Ne8+与He之间电荷交换中的软X射线发射谱, 通过与近期实验测量的X射线谱比较, 发现计算的软X射线谱强度明显偏离已有的测量值. 这些研究表明, 多通道Landau-Zener方法、分子库仑过垒模型以及l分布模型在定量描述电荷交换态选择截面时存在一定的不足, 如果将这些理论模型应用于天体物理的X射线背景研究中, 可能导致对天体等离子体参数的描述不够准确.
    Charge exchange, or electron capture, between highly charged ions and atoms and molecules has been considered as one of important mechanisms controlling soft X-ray emissions in many astrophysical objects and environments. However, to model charge exchange soft X-ray emission, astrophysicists commonly use principal quantum number n and angular momentum quantum numberl resolved state-selective capture cross section data, which are usually obtained by empirical and semi-classical theory calculations. The accuracy of the theoretical model is the key to constructing an accurate X-ray spectrum. With a newly-built cold target recoil ion momentum spectroscopy apparatus, we perform a series of precise state-selective cross section measurements on Ne8+ ions’ single electron capture with He targets, with the projectile energy ranging from 1.4 to 20 keV/u. The experimentally measured Q value spectrum shows that the process of electron captured to state of Ne7+ with n = 4 is the main reaction channel, and that with n = 3 and 5 are the small reaction channels. Using Gaussian curve to fit the area of each channel on the Q value spectrum and normalizing the area of all channels, we obtain the n-resolved relative state-selective cross section. By comparing the measured relative cross sections with the results calculated by the multichannel Landau-Zener method and molecular Coulomb over-barrier model, significant difference among the strengths of small reaction channels is found. Specifically, the multichannel Landau-Zener method overestimates the contribution of n = 2 channel and n = 3 channel, and underestimates the contribution of n = 5 channel. The molecular Coulomb over-barrier model overestimates the contribution of n = 5 channel and underestimates the contribution of n = 3 channel. The significant difference between the theoretical model calculation and experimental measurement is due to the limitations of semiclassical theoretical method and classical theoretical method. Furthermore, with l distribution models commonly used in the astrophysical literature, including the statistical model, separable model, Landau-Zener-I model, Landau-Zener-II model and even model, we calculate the soft X-ray emissions in the charge exchange between 1.6 and 2.4 keV/u Ne8+ and He. It is found that the calculated intensities of X-ray spectra significantly deviate from the existing measurements, and only the separable model can partly match the laboratory simulated solar wind charge exchange X-ray measurement. Furthermore, we find that the intensity of the charge exchange X-ray emission spectrum measured experimentally is dependent on the collision energy, while the emission spectrum calculated based on the model seems to be unchanged with the increase of the collision energy. These results indicate that if the classical and semi-classical models are applied to the astrophysical plasma for studying diffusive soft X-ray background, the obtained parameters of the astrophysical plasma will be inaccurate.
      通信作者: 朱小龙, zhuxiaolong@impcas.ac.cn ; 马新文, x.ma@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402400, 2017YFA0402300)和中国科学院战略先导科技专项(批准号: XDB34020000)资助的课题
      Corresponding author: Zhu Xiao-Long, zhuxiaolong@impcas.ac.cn ; Ma Xin-Wen, x.ma@impcas.ac.cn
    • Funds: Project supported by the State Key R&D Program of China (Grant Nos. 2017YFA0402400, 2017YFA0402300) and the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Grant No. XDB34020000)
    [1]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R 2000 Phys. Rep. 330 95Google Scholar

    [2]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [3]

    Fischer D, Gudmundsson M, Berenyi Z, Haag N 2010 Phys. Rev. A 81 012714Google Scholar

    [4]

    Hayakawa S 1960 Publ. Astron. Soc. Jpn. 12 110

    [5]

    Joseph S, Gary S 1969 Phys. Rev. Lett. 23 597Google Scholar

    [6]

    Pravdo S H, Boldt E A 1975 Astrophys. J. 200 727Google Scholar

    [7]

    Lisse C M, Dennerl K, Englhauser J 1996 Science 274 205Google Scholar

    [8]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [9]

    Beiersdorfer P, Boyce K R, Brown G V 2003 Science 300 1558Google Scholar

    [10]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [11]

    Koutroumpa D, Lallement R, Raymond J C, Kharchenko V 2014 Astrophys. J. 696 1517Google Scholar

    [12]

    Hasan A, Eissa F, Ali R, Schultz D, Stancil P 2001 Astrophys. J. 560 L201Google Scholar

    [13]

    Seredyuk B, McCullough R W, Gilbody H B 2005 Phys. Rev. A 72 022710Google Scholar

    [14]

    Bodewits D, Hoekstra R 2007 Phys. Rev. A 76 032703Google Scholar

    [15]

    Machacek J R, Mahapatra D P, Schultz D R 2014 Phys. Rev. A 90 052708Google Scholar

    [16]

    Ali R, Beiersdorfer P, Harris C L, Neill A 2016 Phys. Rev. A 93 012711Google Scholar

    [17]

    Betancourt-Martinez G L, Beiersdorfer P, Brown G V 2018 Astrophys. J. 868 L17Google Scholar

    [18]

    Zhang R T, Wulf D, McCammon D 2019 AIP Conf. Proc. 2160 070004Google Scholar

    [19]

    Defay X, Morgan K, McCammon D 2013 Phys. Rev. A 88 052702Google Scholar

    [20]

    Fogle M, Wu lf D, Morgan K, et al. 2014 Phys. Rev. A 89 042705Google Scholar

    [21]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [22]

    Lepson J K, Beiersdorfer P, Bitter M, Roquemore A L, Kaita R 2017 AIP Conf. Proc. 1811 190008Google Scholar

    [23]

    Hell N, Brown G V, Wilms J 2016 Astrophys. J. 830 26Google Scholar

    [24]

    Ma X, Liu H P, Sun L T 2009 J. Phys. Conf. Ser. 163 012104Google Scholar

    [25]

    Zhu X L, Ma X W, Li J Y 2019 Nucl. Instrum. Methods B 460 224Google Scholar

    [26]

    Ma X, Zhang R T, Zhang S F, Z hu, X L, Feng W T 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Bliman S, Cornille M, Langereis A 1997 Rev. Sci. Instrum. 68 1080Google Scholar

    [28]

    Bonnet J J, Fleury A, Bonnefoy M 1985 J. Phys. B: At. Mol. Opt. Phys. 18 L23Google Scholar

    [29]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [30]

    Folkmann F, Eisum N, Ciric D, Drentje A 1989 J. Phys. 50 379Google Scholar

    [31]

    Langereis A, Nordgren J, Bruch R 1997 Phys. Scr. T73 85Google Scholar

    [32]

    Fischer D, Feuerstein B, DuBois R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1369Google Scholar

    [33]

    Abdallah M A, Wolff W, Wolf H E 1998 Phys. Rev. A 58 4Google Scholar

    [34]

    Otranto S, Olson, R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723Google Scholar

    [35]

    Niehaus A 1986 J. Phys. B: At. Mol. Opt. Phys. 19 2925Google Scholar

    [36]

    Lyons D, Cumbee R S, Stancil P C 2017 Astrophys. J. Suppl. Ser. 232 27Google Scholar

    [37]

    Kahn S M, Sunyaev R A, von Ballmoos P 2019 State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions (Vol. 2) (Berlin: Springer-Verlag) p33

    [38]

    Cumbee R S, Liu L, Lyons D 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [39]

    Smith R K, Foster A R, Edgar R J, Brickhouse N S 2014 Astrophys. J. 787 77Google Scholar

    [40]

    Abdallah M A, Wolff W, Wolf H E 1998 Phys. Rev. A 57 4373Google Scholar

  • 图 1  电荷交换实验装置布局图, 其中包括离子源系统与反应显微成像谱仪, 超声射流的方向是从下往上的. ETOF是TOF谱仪的引出电场

    Fig. 1.  Layout of CX experimental setup with ion source system and reaction microscope spectroscopy, the supersonic gas jet flow direction is from down to top. ETOF represents the electric field of TOF spectrometer

    图 2  不同入射炮弹能量下Ne8+-He单电子俘获的Q值谱 (a) 1.6 keV/u; (b) 2.4 keV/u; (c) 7.2 keV/u; (d) 20 keV/u. 黑色空心方块和红色实线是实验测量的结果, 蓝色实线为归一到实验测量峰值的MCBM计算的反应窗. 图(d) 中的黑色粗线与MCBM计算的反应窗的交点反映了MCBM计算的态选择截面的大小

    Fig. 2.  Measured Q spectrum of single electron capture between Ne8+ and He with different incident projectile energies: (a) 1.6 keV/u; (b) 2.4 keV/u; (c) 7.2 keV/u; (d) 20.0 keV/u. The black hollow square and the red solid line are the results of the experimental measurement, and the blue solid line is the response window calculated by MCBM normalized to the peak of the experimental measurement. The heavy black thread in panel (d) represents the intensity of state selected cross sections for MCBM calculations

    图 3  Ne8+-He单电子俘获的相对态选择截面, 实心点和实线是实验测量的结果, 空心点和点线是MCBM计算的结果, 不同的颜色与形状代表不同的俘获通道, 实线是MCLZ计算的结果

    Fig. 3.  Ne8+-He single electron capture relative state selection cross section, the solid shape and solid line is the result of experimental measurement, the hollow shape and dot line is the result of MCBM calculation, different colors and shapes represent different capture channels, and the solid line is the result of MCLZ calculation

    图 4  1.6和2.4 keV/u的Ne8+-He俘获电子后的归一化$ {\rm{Ne}}^{7+*}$发射谱 (a) 1.6 keV/u; (b) 2.4 keV/u. 黑色、红色、蓝色、品红、绿色实线分别代表Statistical, Separable, Landau-Zenner-I, Landau-Zenner-II, 以及Even模型计算的结果, 黑色实心点代表Zhang等[18]测量的结果, 半高全宽是7.9 eV

    Fig. 4.  Normalized $ {\rm{Ne}}^{7+*}$ emission spectrum after electron capture of Ne8+-He at 1.6 and 2.4 keV/u: (a) 1.6 keV/u; (b) 2.4 keV/u. The black, red, blue, magenta, and green solid lines represent the results calculated by the Statistical, Separable, Landau-Zenner-I, Landau-Zenner-II, and Even models, respectively. The black solid points represent the results measured by Zhang 2019, the full width at half maximum is 7.9 eV.

  • [1]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R 2000 Phys. Rep. 330 95Google Scholar

    [2]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [3]

    Fischer D, Gudmundsson M, Berenyi Z, Haag N 2010 Phys. Rev. A 81 012714Google Scholar

    [4]

    Hayakawa S 1960 Publ. Astron. Soc. Jpn. 12 110

    [5]

    Joseph S, Gary S 1969 Phys. Rev. Lett. 23 597Google Scholar

    [6]

    Pravdo S H, Boldt E A 1975 Astrophys. J. 200 727Google Scholar

    [7]

    Lisse C M, Dennerl K, Englhauser J 1996 Science 274 205Google Scholar

    [8]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [9]

    Beiersdorfer P, Boyce K R, Brown G V 2003 Science 300 1558Google Scholar

    [10]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [11]

    Koutroumpa D, Lallement R, Raymond J C, Kharchenko V 2014 Astrophys. J. 696 1517Google Scholar

    [12]

    Hasan A, Eissa F, Ali R, Schultz D, Stancil P 2001 Astrophys. J. 560 L201Google Scholar

    [13]

    Seredyuk B, McCullough R W, Gilbody H B 2005 Phys. Rev. A 72 022710Google Scholar

    [14]

    Bodewits D, Hoekstra R 2007 Phys. Rev. A 76 032703Google Scholar

    [15]

    Machacek J R, Mahapatra D P, Schultz D R 2014 Phys. Rev. A 90 052708Google Scholar

    [16]

    Ali R, Beiersdorfer P, Harris C L, Neill A 2016 Phys. Rev. A 93 012711Google Scholar

    [17]

    Betancourt-Martinez G L, Beiersdorfer P, Brown G V 2018 Astrophys. J. 868 L17Google Scholar

    [18]

    Zhang R T, Wulf D, McCammon D 2019 AIP Conf. Proc. 2160 070004Google Scholar

    [19]

    Defay X, Morgan K, McCammon D 2013 Phys. Rev. A 88 052702Google Scholar

    [20]

    Fogle M, Wu lf D, Morgan K, et al. 2014 Phys. Rev. A 89 042705Google Scholar

    [21]

    Beiersdorfer P, Bitter M, Marion M, Olson R E 2005 Phys. Rev. A 72 032725Google Scholar

    [22]

    Lepson J K, Beiersdorfer P, Bitter M, Roquemore A L, Kaita R 2017 AIP Conf. Proc. 1811 190008Google Scholar

    [23]

    Hell N, Brown G V, Wilms J 2016 Astrophys. J. 830 26Google Scholar

    [24]

    Ma X, Liu H P, Sun L T 2009 J. Phys. Conf. Ser. 163 012104Google Scholar

    [25]

    Zhu X L, Ma X W, Li J Y 2019 Nucl. Instrum. Methods B 460 224Google Scholar

    [26]

    Ma X, Zhang R T, Zhang S F, Z hu, X L, Feng W T 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Bliman S, Cornille M, Langereis A 1997 Rev. Sci. Instrum. 68 1080Google Scholar

    [28]

    Bonnet J J, Fleury A, Bonnefoy M 1985 J. Phys. B: At. Mol. Opt. Phys. 18 L23Google Scholar

    [29]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [30]

    Folkmann F, Eisum N, Ciric D, Drentje A 1989 J. Phys. 50 379Google Scholar

    [31]

    Langereis A, Nordgren J, Bruch R 1997 Phys. Scr. T73 85Google Scholar

    [32]

    Fischer D, Feuerstein B, DuBois R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1369Google Scholar

    [33]

    Abdallah M A, Wolff W, Wolf H E 1998 Phys. Rev. A 58 4Google Scholar

    [34]

    Otranto S, Olson, R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723Google Scholar

    [35]

    Niehaus A 1986 J. Phys. B: At. Mol. Opt. Phys. 19 2925Google Scholar

    [36]

    Lyons D, Cumbee R S, Stancil P C 2017 Astrophys. J. Suppl. Ser. 232 27Google Scholar

    [37]

    Kahn S M, Sunyaev R A, von Ballmoos P 2019 State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions (Vol. 2) (Berlin: Springer-Verlag) p33

    [38]

    Cumbee R S, Liu L, Lyons D 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [39]

    Smith R K, Foster A R, Edgar R J, Brickhouse N S 2014 Astrophys. J. 787 77Google Scholar

    [40]

    Abdallah M A, Wolff W, Wolf H E 1998 Phys. Rev. A 57 4373Google Scholar

  • [1] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [2] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法. 物理学报, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [3] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅. 物理学报, 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [4] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响. 物理学报, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [5] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [6] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [7] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [8] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析. 物理学报, 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [9] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [10] 马天鹏, 胡立群, 陈开云. 通过软X射线信号研究芯部等离子体的结构. 物理学报, 2009, 58(2): 1110-1114. doi: 10.7498/aps.58.1110
    [11] 鄢 芬, 崔明启, 陈 凯, 孙立娟, 席识博, 周克瑾, 郑 雷, 赵屹东, 王占山, 朱京涛, 张 众, 赵 佳. 基于多层膜偏振元件的软X射线磁光Faraday偏转测量. 物理学报, 2008, 57(5): 2860-2865. doi: 10.7498/aps.57.2860
    [12] 胡 昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全. 一种时间分辨三通道软X射线光谱仪. 物理学报, 2007, 56(3): 1447-1451. doi: 10.7498/aps.56.1447
    [13] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究. 物理学报, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [14] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换. 物理学报, 2006, 55(11): 5810-5814. doi: 10.7498/aps.55.5810
    [15] 刘运全, 张 杰, 陈正林, 彭晓昱. 软x射线平场光谱仪系统的优化设计. 物理学报, 2004, 53(5): 1433-1439. doi: 10.7498/aps.53.1433
    [16] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用. 物理学报, 2002, 51(1): 55-62. doi: 10.7498/aps.51.55
    [17] 杨家敏, 丁耀南, 易荣清, 王耀梅, 张文海, 郑志坚. 软X射线能谱定量测量技术研究. 物理学报, 2001, 50(9): 1723-1728. doi: 10.7498/aps.50.1723
    [18] 徐向东, 周洪军, 洪义麟, 霍同林, 陶晓明, 傅绍军. 软X射线直线单色仪光场分布实验研究. 物理学报, 2000, 49(6): 1043-1046. doi: 10.7498/aps.49.1043
    [19] 杨志安, 靳 涛, 杨祖慎, 奎热西, 崔明启, 刘风琴. 软X射线辐照引起的InP表面电子态变化. 物理学报, 1999, 48(6): 1113-1117. doi: 10.7498/aps.48.1113
    [20] 刘强, 王建中, 徐向东, 陈学俊. 指数变分方法应用于电荷交换反应. 物理学报, 1991, 40(10): 1590-1594. doi: 10.7498/aps.40.1590
计量
  • 文章访问数:  6098
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-12-09
  • 上网日期:  2021-03-23
  • 刊出日期:  2021-04-20

/

返回文章
返回