搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究

邢海英 郑智健 张子涵 吴文静 郭志英

引用本文:
Citation:

应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究

邢海英, 郑智健, 张子涵, 吴文静, 郭志英

Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain

Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying
PDF
HTML
导出引用
  • 通过第一性原理计算探讨了蓝磷烯与过渡金属硫化物MoTe2/WTe2形成范德瓦耳斯异质结的电子结构和光学性质, 以及施加双轴应力对相关性质的影响. 计算结果表明, 形成BlueP/X Te2 (X = Mo, W)异质结, 二者能带排列为间接带隙type-II并有较强的红外光吸收, 同时屏蔽特性增强. 随压缩应力增加, BlueP/X Te2转变为直接带隙type-II能带排列最后转变为金属性; 随拉伸应力增加, 异质结转变为间接带隙type-I能带排列. 外加应力也能有效调控异质结的光吸收性质, 随压缩应力增加吸收边红移, 光吸收响应拓展至中红外光谱区且吸收系数增大; BlueP/MoTe2较BlueP/WTe2在中红外至红外光区间表现出更强的光吸收响应; 静态介电常数ε1(0)大幅增加. 结果表明, 压缩应力对BlueP/MoTe2和BlueP/WTe2能带排列、光吸收特性均有显著的调控作用, 其中BlueP/MoTe2对调控更敏感, 这些特性也使BlueP/X Te2异质结在窄禁带中红外半导体材料及光电器件具有令人期待的应用价值.
    First principles calculations are performed to explore the electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures after biaxial strain has been applied. The type-II band alignments with indirect band gap are obtained in the most stable BlueP/X Te2 heterostructures, in which the photon-generated carriers can be effectively separated spatially. The BlueP/MoTe2 and BlueP/WTe2 heterostructures both have appreciable absorption of infrared light, while the shielding property is enhanced. The increase of biaxial compressive strain induces indirect-direct band gap transition and semiconductor-metal transition when a certain compressive strain is imposed on the heterostructures, moreover, the band gap of the heterostructures shows approximately linear decrease with the compressive strain increasing, and they undergo a transition from indirect band gap type-II to indirect band gap type-I with the increase of biaxial tensile strain. These characteristics provide an attractive possibility of obtaining novel multifunctional devices. We also find that the optical properties of BlueP/X Te2 heterostructures can be effectively modulated by biaxial strain. With the increase of compression strain, the absorption edge is red-shifted, the response of light absorption extends to the mid-infrared light and the absorption coefficient increases to 10–5 cm–1 for the two heterostructures. The BlueP/MoTe2 shows stronger light absorption response than the BlueP/WTe2 in the mid-infrared to infrared region and the ε1(0) increases significantly. The BlueP/X Te2 heterostructures exhibit modulation of their band alignment and optical properties by applied biaxial strain. The calculation results not only pave the way for experimental research but also indicate the great potential applications of BlueP/XTe2 van der Waals heterostructures in narrow band gap mid-infrared semiconductor materials and photoelectric devices.
      通信作者: 邢海英, hyxingmail@126.com ; 郭志英, zyguo@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11475212, 11505211, 61204008)资助的课题
      Corresponding author: Xing Hai-Ying, hyxingmail@126.com ; Guo Zhi-Ying, zyguo@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475212, 11505211, 61204008)
    [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar

    [3]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [4]

    Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar

    [5]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111

    [6]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar

    [7]

    Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar

    [8]

    Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar

    [9]

    Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar

    [10]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109

    [11]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587

    [12]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar

    [13]

    Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar

    [14]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [15]

    Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061

    [16]

    Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar

    [17]

    Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069

    [18]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [19]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [20]

    Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar

    [21]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [22]

    Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar

    [23]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar

    [24]

    Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar

    [25]

    Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar

    [26]

    Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar

    [27]

    Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar

    [28]

    You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar

    [29]

    Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar

    [31]

    Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar

    [32]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [33]

    Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar

    [34]

    Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar

    [35]

    Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar

    [36]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar

    [37]

    Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar

    [38]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [39]

    马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 物理学报 69 117101Google Scholar

    Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar

    [40]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033

    [41]

    Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [45]

    Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar

    [46]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [47]

    Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar

    [48]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [49]

    Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar

    [50]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [51]

    Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar

    [52]

    Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar

    [53]

    Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar

    [54]

    Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar

    [55]

    何文浩 2019 硕士学位论文 (西安: 长安大学)

    He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)

    [56]

    沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)

    [57]

    Penn D R 1962 Phys. Rev. 128 2093Google Scholar

  • 图 1  单层BlueP与X Te2的能带结构图和态密度图 (a) BlueP; (b) MoTe2; (c) WTe2

    Fig. 1.  Energy band structures and density of states of BlueP and X Te2 monolayer: (a) BlueP; (b) MoTe2; (c) WTe2.

    图 2  BlueP/X Te2异质结模型的侧视图和俯视图 (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2

    Fig. 2.  Side and top view of BlueP/X Te2 van der Waals heterostructures: (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2

    图 3  BlueP/X Te2异质结结合能Eb随层间距d0的变化 (a) BlueP/MoTe2; (b) BlueP/WTe2

    Fig. 3.  Binding energy of the BlueP/X Te2 van der Waals heterostructures as a function of the distance d0 between the BlueP and X Te2 monolayers: (a) BlueP/MoTe2; (b) BlueP/WTe2.

    图 4  BlueP/X Te2异质结能带结构、分态密度、能带排列及异质结中CBM和VBM分解电荷密度图 (a)−(d) BlueP/MoTe2; (e)−(h) BlueP/WTe2

    Fig. 4.  Energy band structures, partial density of states (PDOS), band alignment and the band decomposed charge density of CBM and VBM in heterostructures: (a)−(d) BlueP/MoTe2; (e)−(h) BlueP/WTe2.

    图 5  BlueP/X Te2异质结体系总能与双轴应变关系图

    Fig. 5.  Total energy of the BlueP/X Te2 van der Waals heterostructures as a function of the biaxial strain ε

    图 6  施加不同应力下(a) BlueP/MoTe2和(b) BlueP/WTe2异质结能带图, 其中ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Fig. 6.  Energy band structures under different biaxial strains for (a) BlueP/MoTe2 and (b) BlueP/WTe2, where $ \varepsilon >0\;(\varepsilon <0) $ represents the tensile strain (compressive strain).

    图 7  施加不同应力下(a) BlueP/MoTe2和(b) BlueP/WTe2异质结分态密度图; (c) BlueP/X Te2带隙与应力变化关系图; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Fig. 7.  Partial density of states under different biaxial strains for (a) BlueP/MoTe2 and (b) BlueP/WTe2; (c) the band gap as a function of biaxial strains in BlueP/X Te2 van der Waals heterostructures; ε > 0 (ε < 0) represents the tensile strain (compressive strain).

    图 8  单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结介电函数实部ε1(ω)谱图 (a)单层BlueP与X Te2; (b) BlueP/X Te2异质结; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Fig. 8.  Real part of the dielectric function of BlueP and X Te2 monolayer, and BlueP/X Te2 heterostructures under different biaxial strains: (a) BlueP and X Te2 monolayer; (b) BlueP/X Te2; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0) represents the tensile strain (compressive strain).

    图 9  单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结光吸收谱 (a)单层BlueP, MoTe2与BlueP/MoTe2; (b)单层BlueP, WTe2与BlueP/WTe2; (c), (d) BlueP/MoTe2, BlueP/WTe2, 施加应力区间为–4%–+4%

    Fig. 9.  Absorption coefficient of BlueP and X Te2 monolayer, and BlueP/XTe2 heterostructures under different biaxial strains: (a) BlueP, MoTe2 monolayer and BlueP/MoTe2; (b) BlueP, WTe2 monolayer and BlueP/WTe2; (c) and (d) for BlueP/MoTe2 and BlueP/WTe2 within the biaxial strains –4%–+4%, respectively.

    表 1  单层BlueP, MoTe2和WTe2及异质结BlueP/X Te2的晶格常数、带隙、晶格失配度, 以及异质结BlueP/X Te2的层间距

    Table 1.  Lattice constants a, band gaps Eg, lattice mismatch σ of BlueP, MoTe2 and WTe2 monolayers and BlueP/X Te2 heterostructures, and interlayer distance d0 of BlueP/X Te2 heterostructures.

    aEg/eVσ/%d0
    BlueP3.281.94 (间)
    MoTe23.551.11 (直)
    WTe23.551.08 (直)
    BlueP/MoTe23.390.6 (间)3.63.3
    BlueP/WTe23.430.713 (间)3.93.4
    下载: 导出CSV
  • [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar

    [3]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [4]

    Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar

    [5]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111

    [6]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar

    [7]

    Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar

    [8]

    Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar

    [9]

    Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar

    [10]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109

    [11]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587

    [12]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar

    [13]

    Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar

    [14]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [15]

    Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061

    [16]

    Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar

    [17]

    Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069

    [18]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [19]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [20]

    Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar

    [21]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [22]

    Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar

    [23]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar

    [24]

    Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar

    [25]

    Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar

    [26]

    Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar

    [27]

    Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar

    [28]

    You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar

    [29]

    Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar

    [31]

    Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar

    [32]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [33]

    Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar

    [34]

    Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar

    [35]

    Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar

    [36]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar

    [37]

    Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar

    [38]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [39]

    马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 物理学报 69 117101Google Scholar

    Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar

    [40]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033

    [41]

    Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [45]

    Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar

    [46]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [47]

    Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar

    [48]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [49]

    Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar

    [50]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [51]

    Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar

    [52]

    Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar

    [53]

    Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar

    [54]

    Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar

    [55]

    何文浩 2019 硕士学位论文 (西安: 长安大学)

    He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)

    [56]

    沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)

    [57]

    Penn D R 1962 Phys. Rev. 128 2093Google Scholar

  • [1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [4] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [5] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [6] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [7] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能. 物理学报, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [8] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [13] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [15] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [19] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
计量
  • 文章访问数:  7584
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-18
  • 修回日期:  2020-11-21
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回