搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Peltier效应: 从线性到非线性

杨振 朱璨 柯亚娇 何雄 罗丰 王剑 王嘉赋 孙志刚

引用本文:
Citation:

Peltier效应: 从线性到非线性

杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚

Peltier effect: From linear to nonlinear

Yang Zhen, Zhu Can, Ke Ya-Jiao, He Xiong, Luo Feng, Wang Jian, Wang Jia-Fu, Sun Zhi-Gang
PDF
HTML
导出引用
  • 热电制冷技术是一种环保型的制冷技术, 具有广阔的应用前景. 其中Peltier效应在热电制冷过程中具有核心作用, 但是由于Peltier系数很难测量, 在实际应用过程中通常是首先得到Seebeck系数, 然后利用Kelvin第二关系式间接得到Peltier系数. 需要注意的是, Kelvin第二关系式是在线性条件下(Ohm定律、Fourier定律等)得到的, 而在实际过程中非线性的电流-电压关系(肖特基结、pn结等)和热输运关系却是大量存在的. 在纳米尺度, 量子效应将起到主导作用, 此时Peltier效应应该考虑非线性的影响, Kelvin第二关系式的适用性也应该重新考虑. 本文综述了采用不同方法对Peltier系数和Kelvin第二关系式的理论推导, 讨论了推导过程中利用的假设条件; 概述了Peltier系数实验测定的几种方法, 讨论了各种附加效应对Peltier系数测定的影响; 并介绍了非线性Peltier效应的理论工作. 最后本文讨论了在非线性条件下Peltier效应的研究策略和可行方向.
    Thermoelectric refrigeration technology is an environment-friendly refrigeration technology with broad application prospects. The Peltier effect plays a central role in the thermoelectric refrigeration process, however, the Peltier coefficient is difficult to measure. So in the actual application process, first, the Seebeck coefficient is usually obtained, and then the Peltier coefficient is achieved by the Kelvin's second relation indirectly. It should be noted that the Kelvin's second relation is obtained under linear conditions (Ohm's law, Fourier's law, etc.), while in practice, nonlinear current-voltage relationships (Schottky junction, pn junction, etc.) and nonlinear heat transport relations are common. And quantum effect plays a leading role in the nano-scaled region, then the Peltier effect must consider the influence of nonlinearity, and the applicability of the Kelvin's second relation must also be reconsidered. This paper first summarizes the theoretical derivation of Peltier coefficient and the Kelvin’s second relation by different methods, then discusses the hypothetical conditions used in the derivation process, and points out that the Kelvin’s second relation can be established only under the hypothetical linear conditions. Then, several experimental methods of determining the Peltier coefficient are summarized. It is found that there are still many problems encountered in the measurement of Peltier coefficient, and the Kelvin’s second relation has not been proved accurately by practical experiments. Various side effects (Fourier effect, Thomson effect, Joule effect and Seebeck effect) in the measurement process affect the temperature distribution of the system directly or indirectly, making it difficult to measure Peltier heat. After that, the theoretical work of nonlinear Peltier effect is briefly introduced. In the process of thermal transport and electrical transport on a microscopic scale, quantum effect plays a leading role, and the nonlinear part of the Peltier coefficient gradually emerges. These studies show the cognition of researchers that the Peltier effect gradually changes from linear to nonlinear. The nonlinear Peltier effect not only exists objectively, but also is very important in the practical applications. However, the current research on the nonlinear Peltier effect is still at the theoretical level, and there is almost no experimental work. Finally, we discuss the research strategy and feasible research direction of Peltier effect under nonlinear conditions. An integrated study of the relationship among various heterojunction band structures, interface properties and interface effects is helpful in comprehensively understanding the Peltier effect. With the continuous improvement of experimental conditions and theoretical research, the study of nonlinear Peltier effect is expected to realize a new breakthrough.
      通信作者: 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0111500)和国家自然科学基金(批准号: 11574243, 11834012)资助的课题
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by National Key Research and Development Program of China (Grant No. 2018YFE0111500) and the National Natural Science Foundation of China (Grant Nos. 11574243, 11834012)
    [1]

    Peltier J C A 1834 Annales de Chimie et de Physique 56 371

    [2]

    Disalvo F J 1999 Science 285 703Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X 2015 Appl. Energ. 143 1Google Scholar

    [5]

    Twaha S, Zhu J, Yan Y, Li B 2016 Renew. Sust. Energ. Rev. 65 698Google Scholar

    [6]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [7]

    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R 2009 Nat. nanotechnol. 4 235Google Scholar

    [8]

    Ibañez-Puy M, Bermejo-Busto J, Martín-Gómez C, Vidaurre-Arbizu M, Sacristán-Fernández J A 2017 Appl. Energ. 200 303Google Scholar

    [9]

    Hou W, Nie X, Zhao W, Zhou H, Mu X, Zhu W, Zhang Q 2018 Nano Energy 50 766Google Scholar

    [10]

    Caswell A E 1911 Phys. Rev. (Series I) 33 379Google Scholar

    [11]

    Rötzer G, Lockwood L, Gil Z J L 1977 J. Appl. Phys. 48 750Google Scholar

    [12]

    Fukushima A, Kubota H, Yamamoto A, Suzuki Y, Yuasa S 2006 J. Appl. Phys. 99 08H706Google Scholar

    [13]

    Garrido J 2009 J. Phys. Condens. Matter 21 155802Google Scholar

    [14]

    Garrido J, Casanovas A 2012 J. Electron. Mater. 41 1990Google Scholar

    [15]

    Avery A D, Zink B L 2013 Phys. Rev. Lett. 111 126602Google Scholar

    [16]

    Garrido J, Casanovas A 2014 J. Appl. Phys. 115 123517Google Scholar

    [17]

    Thomson W 1857 P. Roy. Soc. Edinb. 91Google Scholar

    [18]

    Callen H B 1948 Phys. Rev. 73 1349Google Scholar

    [19]

    Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited) pp18−21

    [20]

    Heikes R R, Ure R W 1961 Thermoelectricity: Science and Engineering (New York-London: Inderscience Publishers) pp40−42

    [21]

    Zebarjadi M, Esfarjani K, Shakouri A 2007 Appl. Phys. Lett. 91 122104Google Scholar

    [22]

    Whitney R S 2013 Phys. Rev. B 88 064302Google Scholar

    [23]

    López R, Sánchez D 2013 Phys. Rev. B 88 045129Google Scholar

    [24]

    Bogachek E N, Scherbakov A G, Landman U 1998 Solid State Commun. 108 851Google Scholar

    [25]

    Drebushchak V A 2007 J. Therm. Anal. Calorim. 90 289Google Scholar

    [26]

    Drebushchak V A 2008 J. Therm. Anal. Calorim. 91 311Google Scholar

    [27]

    Onsager L 1931 Phys. Rev. 37 405Google Scholar

    [28]

    Wang C, Chen S 2009 J. Electron. Mater. 38 655Google Scholar

    [29]

    Straube H, Wagner J M, Breitenstein O 2009 Appl. Phys. Lett. 95 052107Google Scholar

    [30]

    Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W, Li S, Li Q, Chi L, Di C A, Zhu D 2018 Nat. Commun. 9 3586Google Scholar

    [31]

    Titov O Y, Velazquez-Perez J E, Gurevich Y G 2015 Int. J. Therm. Sci. 92 44Google Scholar

    [32]

    Apertet Y, Goupil C 2016 Int. J. Therm. Sci. 104 225Google Scholar

    [33]

    Sánchez D, López R 2016 C. R. Phys. 17 1060Google Scholar

    [34]

    Kulik I O 1994 J. Phys. Condens. Matter 6 9737Google Scholar

    [35]

    Bogachek E N, Scherbakov A G, Landman U 1999 Phys. Rev. B 60 11678Google Scholar

    [36]

    Çipiloğlu M A, Turgut S, Tomak M 2004 Phys. Status Solidi B 241 2575Google Scholar

    [37]

    Zebarjadi M, Esfarjani K, Shakouri 2008 8th Symposium on Thermoelectric Power Generation Held 2007 MRS Fall Meeting Boston, November 26−29, 2007 p427

    [38]

    Sadeghian R B, Bahk J-H, Bian Z, Shakouri A 2012 J. Electron. Mater. 41 1370Google Scholar

  • 图 1  (a) Seebeck效应示意图; (b) Peltier效应示意图; (c) Thomson效应示意图

    Fig. 1.  Schematic diagram of (a) Seebeck effect; (b) Peltier effect; (c) Thomson effect.

    图 2  线性与非线性现象的示意图 (a)线性的Ohm定律; (b)非线性的肖克莱方程式; (c)顺磁材料中磁感应强度与磁场强度的线性关系; (d)铁磁材料中磁感应强度与磁场强度的非线性关系; (e)顺电材料中电位移与电场强度的线性关系; (f)铁电材料中电位移与电场强度的非线性关系; (g)线性光学中极化强度与光场场强的线性关系; (h)非线性光学中极化强度与光场场强的非线性关系; (i)线性的Peltier效应; (j)非线性Peltier效应

    Fig. 2.  Schematic diagram of linear and nonlinear phenomena: (a) Linear Ohm's law; (b) nonlinear Shockley equation; (c) linear relationship between magnetic induction intensity and magnetic field intensity in paramagnetic materials; (d) nonlinear relationship between magnetic induction intensity and magnetic field intensity in ferromagnetic materials; (e) linear relationship between electric displacement and electric field intensity in paraelectric materials; (f) nonlinear relationship between electric displacement and electric field intensity in ferroelectric materials; (g) linear relationship between polarization intensity and optical field strength in linear optics; (h) nonlinear relationship between polarization intensity and optical field strength in nonlinear optics; (i) linear Peltier effect; (j) nonlinear Peltier effect.

    图 3  由两种材料 (a, b)以及电压表组成的电路[18], $ {T}_{1} $表示高温, $ {T}_{0} $表示低温, ${T}'$表示环境温度, $ {\widetilde {\mu }}_{x} $(x为0, 1, l, r)表示不同位置的电化学势

    Fig. 3.  A circuit composed of two materials (a, b) and a voltmeter[18], $ {T}_{1} $ represents high temperature, $ {T}_{0} $ represents low temperature, ${T}'$ represents ambient temperature, and $ {\widetilde {\mu }}_{x} $(x is 0, 1, l, r) represents electrochemical potential at different positions.

    图 4  两种材料 (a, b)组成的界面处Peltier效应示意图[18], $ {{{w}}}_{{\rm{a}}\left({\rm{b}}\right)} $表示材料a(b)中的能量流密度, $ {{{q}}}_{\rm{a}}-{{{q}}}_{\rm{b}} $表示界面处吸收(放出)的Peltier热量

    Fig. 4.  Schematic diagram of the Peltier effect at the interface composed of two materials (a, b)[18], $ {{{w}}}_{{\rm{a}}\left({\rm{b}}\right)} $ represents the energy flow density in material a(b), and $ {{{q}}}_{\rm{a}}-{{{q}}}_{\rm{b}} $ represents the Peltier heat absorbed (released) at the interface.

    图 5  Seebeck效应和Peltier效应的能带原理图 (a)由金属-n型半导体-金属结构组成的器件在温度梯度下的能带结构; (b)由金属-n型半导体结构组成的器件在无外加电场下的能带结构

    Fig. 5.  Energy band principle diagrams of Seebeck effect and Peltier effect: (a) Energy band structure of a device composed of a metal-semiconductor (n-type)-metal structure under a temperature gradient; (b) energy band structure of a device composed of a metal-semiconductor (n-type) structure without an external electric field.

    图 6  由n型和p型碲化铋半导体构成的热电器件[14] (a)由两对n/p热电对组成的热电器件; (b)一对n/p热电对的热端结构; (c)热电器件的侧面结构, 器件四周全部被绝热材料包覆, 只有两侧可以与外界换热

    Fig. 6.  Thermoelectric devices composed of n-type and p-type bismuth telluride semiconductors[14]: (a) A thermoelectric device composed of two pairs of n/p thermoelectric pairs; (b) hot end structure of a pair of n/p thermoelectric pairs; (c) side structure of the thermoelectric device, all around the device are covered with insulating materials, and only two sides can exchange heat with the outside world.

    图 7  利用热悬浮装置和锁相热成像技术对有机薄膜中Peltier效应的测量[30] (a)在横向结构的薄膜热电器件上同时发生的热效应示意图; (b)由Joule热和Peltier热造成的温度分布示意图; (c)分离Joule热和Peltier热的机制示意图; (d)在电流密度为1.5 A/mm2, 施加时间为0.01 s时Peltier热和Joule热导致的温度分布

    Fig. 7.  Measurement of the Peltier effect in organic thin films using thermal levitation devices and lock-in thermal imaging technology[30]: (a) Schematic diagram of the thermal effects simultaneously occurring on the thin-film thermoelectric device with lateral structure; (b) temperature distribution caused by Joule heat and Peltier heat; (c) mechanism of separating Joule heat and Peltier heat; (d) temperature distribution caused by Peltier heat and Joule heat when current density is 1.5 A/mm2 and application time is 0.01 s.

    图 8  悬浮磁性薄膜的Peltier效应测试装置[15] (a)测试装置的侧面示意图; (b)测试装置的SEM图, 其中粉色表示样品, 红色和黄色表示加热器, 蓝色和绿色表示热电偶; (c)测试装置的局部放大SEM图

    Fig. 8.  Peltier effect test device of suspended magnetic film[15]: (a) Side view of the test device; (b) SEM image of the test device, in which pink represents the sample, red and yellow represent heaters, and blue and green represent thermocouples; (c) a partial enlarged SEM image of the test device.

    图 9  (a)在量子点接触时, 不同电压下, $ \varPi /T $$ {\rm{\xi }} $的关系图[24], $ {\rm{\xi }}=2\left(E-{\rm{e}}{U}_{0}\right)/\hslash {\omega }_{y} $; (b)当$ \xi =7 $, 在不同电压和温度下$ \varPi /T $与无量纲回旋频率$ {\omega }_{\rm{c}}/{\omega }_{y} $的关系图[24]; (c)在掺杂InGaAs半导体中, 不同载流子浓度下, Peltier系数与电流的关系图[21]; (d)在77 K和300 K时, 非线性和线性Peltier效应产生的制冷性能与电流的关系图[21]

    Fig. 9.  (a) In quantum dots, the relationship between $ \varPi /T $ and $ {\rm{\xi }} $ under different voltages, $ {\rm{\xi }}=2\left(E-{\rm{e}}{U}_{0}\right)/\hslash {\omega }_{y} $[24]; (b) when $ \xi =7 $, the relationship between $ \varPi /T $ and the dimensionless cyclotron frequency $ {\omega }_{\rm{c}}/{\omega }_{y} $ at different voltages and temperatures[24]; (c) in doped InGaAs semiconductors, the relationship between Peltier coefficient and current under different carrier concentrations[21]; (d) at 77 K and 300 K, the relationship between current and cooling generated by the nonlinear and linear Peltier effect[21].

    表 1  物理符号命名

    Table 1.  Physical symbol nomenclature.

    Q热量(J)$ \bar {l} $电子平均自由程(m)
    $ {Q}_{\rm{P}} $Peltier热(J)G吉布斯自由能(J)
    $ {Q}_{\rm{T}} $Thomson热(J)H焓(J)
    I电流(A)S熵(J/K)
    U电压(V)Δq形成静电电压的电荷差值
    i电流密度(A/m2)a电子热容系数(J/K)
    E电场强度(V/m)N电子总数
    T绝对温度(K)A热电臂的横截面积(m2)
    Ji通量, 代指热通量或电通量等K热导系数(W/K)
    Xj引起迁移的广义力或动力R电热导率(S/m)
    Lij唯象系数$ {P}_{\rm{J}} $Joule热功率密度(W/m3)
    J粒子流密度$ {P}_{\rm{P}} $Peltier热功率密度(W/m3)
    q热流密度(W/m2)m电子有效质量(kg)
    S熵流密度(W/(K·m2))
    w能量流密度(W/m2)希腊字母
    W能量通量(W)$ \varPi $Peltier系数(V)
    Is熵流(W/K)$ \alpha $Seebeck系数(V/K)
    E电子能量(eV)$ {\sigma }_{\rm{T}} $Thomson系数(V/K)
    $ {E}_{\rm{F}} $费米能级(eV)φ接触电势(V)
    $ {E}_{\rm{c}} $导带底(eV)$ \widetilde {\mu } $电化学势, 参照文献[19, 20], 代表材料费米能级到真空能级的能量差(eV)
    $ {E}_{{\rm{v}}} $价带顶(eV)μ化学势, 参照文献[19, 20], 代表费米能级到导带底的能量差(eV)
    $ \Delta {E}_{\rm{tn}} $在半导体中相对于导带底, 输运电子的平均能量(eV)ε电子动能(eV)
    $ \Delta {E}_{\rm{m}} $在金属中相对于费米能级, 输运电子的平均能量(eV)$ \gamma $金属之间电子转移数目相关的系数
    n载流子浓度ΘV特征温度(K)
    r散射因子κ热导率(W/(m·K))
    D扩散系数(m2/s)Γ热转移系数(W/K)
    u迁移率(m2/(V·s))$ \sigma $电导率(S/m)
    k玻尔兹曼常数$ \tau $弛豫时间(s)
    h普朗克常数$ {\tau }_{i} $非弹性弛豫时间(s)
    $ \hslash $约化普朗克常数$ \tau \left(E\right)$描述分布函数如何弛豫的特征时间(s)
    下载: 导出CSV

    表 2  不同方法对Seebeck系数、Peltier系数以及Kelvin第二关系式推导时的假设条件及存在的问题

    Table 2.  The assumptions and problems in the derivation of Seebeck coefficient, Peltier coefficient and Kelvin's second relationship by different methods.

    理论假设条件存在问题疑问
    经典热力学推导三种热电效应可逆忽略Joule热和Fourier热Peltier效应线性可逆(Peltier系数与
    电流无关)
    Joule热和Fourier
    热不可忽略
    Peltier系数真
    的与电流无
    关吗?
    不可逆热力学推导控制不可逆过程的宏观规律可以用线性形式Onsager倒易关系非线性关系大量存在(如pn结中的电流-电压关系)Onsager倒易关系只适用于线性条件
    能带理论
    推导
    爱因斯坦关系式界面处由于费米能级的不连续性导致的电子跃迁放热归结为Joule热爱因斯坦关系式是一种线性关系界面处电子跃迁引起的热量变化似乎和Peltier效应更为类似
    吉布斯函数推导热力学平衡态有温度梯度存在时则不能将其考虑成热力学平衡态
    下载: 导出CSV

    表 3  不同材料的Seebeck系数与Peltier系数

    Table 3.  Seebeck coefficient and Peltier coefficient of different materials.

    研究对象测试温度/K Seebeck系数/mV·K–1 $ \alpha T $/mV Peltier系数/mV 文献
    金属Cu/Bi热电偶300 $ {\alpha }_{\rm{Bi}}-{\alpha }_{\rm{Cu}} $0.0548 16.4 $ {\varPi }_{\rm{Bi}}-{\varPi }_{\rm{Cu}} $16 [10]
    镍铝/镍铬合金热电偶310 $ {\alpha }_{\rm{ch}}-{\alpha }_{\rm{al}} $0.0406 12.6 $ {\varPi }_{\rm{ch}}-{\varPi }_{\rm{al}} $27.2±1.3 [16]
    Co/Au热电偶295 $ {\alpha }_{\rm{Au}}-{\alpha }_{\rm{Co}} $0.0329 9.7 $ {\varPi }_{\rm{Au}}-{\varPi }_{\rm{Co}} $27 [12]
    半导体p型硅的固液界面1683 $ {\varPi }_{\text{固}}-{\varPi }_{\text{液}} $190±25% [11]
    碲化铋半导体300 $ {\alpha }_{\rm{p}}-{\alpha }_{\rm{n}} $0.420 126 $ {\varPi }_{\rm{p}}-{\varPi }_{\rm{n}} $124±0.7 [14]
    薄膜悬浮的Ni-ett300 ${\alpha _{ {\rm{poly} }\left( { {\rm{Ni} }\text-{\rm{ett} } } \right)} }$–0.079 –23.5 ${\varPi _{{\rm{poly}}\left( {{\rm{Ni}} \text- {\rm{ett}}} \right)}} $–21.6 [30]
    悬浮的磁性薄膜300 $ {\alpha }_{\rm{Fe}} $0.0062 1.86 $ {\varPi }_{\rm{Fe}} $1.81 [15]
    300 $ {\alpha }_{\rm{Ni}} $–0.015 –4.50 $ {\varPi }_{\rm{Ni}}$3.89 [15]
    300 ${\alpha }_{ {\rm{Ni} }\text-{\rm{Fe} } }$ –0.023 –6.90 ${\varPi }_{ {\rm{Ni} }\text-{\rm{Fe} } }$–6.50 [15]
    下载: 导出CSV

    表 4  非线性Peltier效应的理论进展总结

    Table 4.  Summary of the theoretical progress of the nonlinear Peltier effect.

    研究人员研究对象主要结论
    Kulik[34]金属膜$\varPi =\dfrac{ {\text{π} }^{2}{T}^{2} }{2{\rm{e} }\mu }+\dfrac{3{\text{π} }^{2}{\rm{e} }\tau {\tau }_{\rm{i} } }{m}{\left|{{E} }\right|}^{2}$, 在低温时, Peltier效应的线性部分随温度的降低而逐渐消失, 非线性部分将变为主导
    López等[23]量子点接触$\varPi ={\varPi }_{1}\left[1+\dfrac{1}{ {\sigma }_{11} }\left(\dfrac{ {R}_{111} }{ {R}_{11} }-\dfrac{ {\sigma }_{111} }{ {\sigma }_{11} }\right)I+\cdots \right]$, Peltier系数的非线性部分由非线性传导系数与线性传导系数的相对强度以及导体的热特性和电特性之间的差值给出
    Bogachek等[24]量子点接触$\varPi =T\dfrac{\partial {I}_{\rm{s} } }{\partial I}$, Peltier效应可能受到外加电压、垂直磁场或两者共同作用影响而呈现非线性
    Çipiloğlu等[36]量子点接触非线性Peltier效应最低阶是三阶的
    Zebarjadi等[21]掺杂InGaAs半导体$ \varPi ={\varPi }_{1}+{\varPi }_{3}{{{i}}}^{2} $, 三阶Peltier系数正比于电子有效质量, 反比于载流子浓度的平方, 在77 K时非线性Peltier效应将使制冷性能提高700%
    Sadeghian等[38]InAs1–xSbx半导体300 K下非线性系统的最大冷却量是线性系统的两倍以上
    下载: 导出CSV
  • [1]

    Peltier J C A 1834 Annales de Chimie et de Physique 56 371

    [2]

    Disalvo F J 1999 Science 285 703Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X 2015 Appl. Energ. 143 1Google Scholar

    [5]

    Twaha S, Zhu J, Yan Y, Li B 2016 Renew. Sust. Energ. Rev. 65 698Google Scholar

    [6]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [7]

    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R 2009 Nat. nanotechnol. 4 235Google Scholar

    [8]

    Ibañez-Puy M, Bermejo-Busto J, Martín-Gómez C, Vidaurre-Arbizu M, Sacristán-Fernández J A 2017 Appl. Energ. 200 303Google Scholar

    [9]

    Hou W, Nie X, Zhao W, Zhou H, Mu X, Zhu W, Zhang Q 2018 Nano Energy 50 766Google Scholar

    [10]

    Caswell A E 1911 Phys. Rev. (Series I) 33 379Google Scholar

    [11]

    Rötzer G, Lockwood L, Gil Z J L 1977 J. Appl. Phys. 48 750Google Scholar

    [12]

    Fukushima A, Kubota H, Yamamoto A, Suzuki Y, Yuasa S 2006 J. Appl. Phys. 99 08H706Google Scholar

    [13]

    Garrido J 2009 J. Phys. Condens. Matter 21 155802Google Scholar

    [14]

    Garrido J, Casanovas A 2012 J. Electron. Mater. 41 1990Google Scholar

    [15]

    Avery A D, Zink B L 2013 Phys. Rev. Lett. 111 126602Google Scholar

    [16]

    Garrido J, Casanovas A 2014 J. Appl. Phys. 115 123517Google Scholar

    [17]

    Thomson W 1857 P. Roy. Soc. Edinb. 91Google Scholar

    [18]

    Callen H B 1948 Phys. Rev. 73 1349Google Scholar

    [19]

    Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited) pp18−21

    [20]

    Heikes R R, Ure R W 1961 Thermoelectricity: Science and Engineering (New York-London: Inderscience Publishers) pp40−42

    [21]

    Zebarjadi M, Esfarjani K, Shakouri A 2007 Appl. Phys. Lett. 91 122104Google Scholar

    [22]

    Whitney R S 2013 Phys. Rev. B 88 064302Google Scholar

    [23]

    López R, Sánchez D 2013 Phys. Rev. B 88 045129Google Scholar

    [24]

    Bogachek E N, Scherbakov A G, Landman U 1998 Solid State Commun. 108 851Google Scholar

    [25]

    Drebushchak V A 2007 J. Therm. Anal. Calorim. 90 289Google Scholar

    [26]

    Drebushchak V A 2008 J. Therm. Anal. Calorim. 91 311Google Scholar

    [27]

    Onsager L 1931 Phys. Rev. 37 405Google Scholar

    [28]

    Wang C, Chen S 2009 J. Electron. Mater. 38 655Google Scholar

    [29]

    Straube H, Wagner J M, Breitenstein O 2009 Appl. Phys. Lett. 95 052107Google Scholar

    [30]

    Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W, Li S, Li Q, Chi L, Di C A, Zhu D 2018 Nat. Commun. 9 3586Google Scholar

    [31]

    Titov O Y, Velazquez-Perez J E, Gurevich Y G 2015 Int. J. Therm. Sci. 92 44Google Scholar

    [32]

    Apertet Y, Goupil C 2016 Int. J. Therm. Sci. 104 225Google Scholar

    [33]

    Sánchez D, López R 2016 C. R. Phys. 17 1060Google Scholar

    [34]

    Kulik I O 1994 J. Phys. Condens. Matter 6 9737Google Scholar

    [35]

    Bogachek E N, Scherbakov A G, Landman U 1999 Phys. Rev. B 60 11678Google Scholar

    [36]

    Çipiloğlu M A, Turgut S, Tomak M 2004 Phys. Status Solidi B 241 2575Google Scholar

    [37]

    Zebarjadi M, Esfarjani K, Shakouri 2008 8th Symposium on Thermoelectric Power Generation Held 2007 MRS Fall Meeting Boston, November 26−29, 2007 p427

    [38]

    Sadeghian R B, Bahk J-H, Bian Z, Shakouri A 2012 J. Electron. Mater. 41 1370Google Scholar

  • [1] 张小丽, 殷秋鹏, 李果, 姚曦, 丁礼磊. 非线性磁电层合材料的对称等效电路理论及数值仿真分析. 物理学报, 2024, 73(23): 237501. doi: 10.7498/aps.73.20240934
    [2] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势. 物理学报, 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [3] 陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚. Peltier系数的稳态法和瞬态法测量. 物理学报, 2023, 72(6): 068401. doi: 10.7498/aps.72.20222255
    [4] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟. 物理学报, 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [7] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [8] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [9] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [10] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [11] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [12] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [13] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究. 物理学报, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [14] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [15] 邹建龙, 马西奎. 一类由饱和引起的非线性现象. 物理学报, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [16] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [17] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [18] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [19] 唐昌建, 钱尚介. 离子通道回旋电子注受激辐射非线性理论. 物理学报, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  13005
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-10
  • 上网日期:  2021-05-10
  • 刊出日期:  2021-05-20

/

返回文章
返回