搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析

李大为 王韬 尹晓蕾 李佳美 王利 张腾 张天雄 崔勇 卢兴强 王丽 张杰 徐光

引用本文:
Citation:

皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析

李大为, 王韬, 尹晓蕾, 李佳美, 王利, 张腾, 张天雄, 崔勇, 卢兴强, 王丽, 张杰, 徐光

Accurate model and performance analysis of broadband pulsed amplification in picosecond petawatt laser system

Li Da-Wei, Wang Tao, Yin Xiao-Lei, Li Jia-Mei, Wang Li, Zhang Teng, Zhang Tian-Xiong, Cui Yong, Lu Xing-Qiang, Wang Li, Zhang Jie, Xu Guang
PDF
HTML
导出引用
  • 为准确分析皮秒拍瓦激光系统的频域放大特性, 通过引入钕玻璃实际受激发射截面, 建立了宽频带激光放大的精确模型, 对比分析了常用高斯线型近似的不足. 针对神光II高能拍瓦激光系统, 分析了不同线型下, 注入种子的光谱形状、中心波长以及能量稳定性对放大系统的影响. 结果表明: 实际线型会加剧增益窄化效应; 对于107 增益, 光谱将窄化为3 nm, 系统累积B积分增大至1.7; 窄化效应降低了注入种子中心波长的要求, 增益饱和会使输出能量稳定性提升近一倍. 在上述基础上, 进行了宽频带激光放大的实验研究, 对于注入的10 nm (FWHM)超高斯、1054 nm中心波长、3% (RMS)稳定性的参量放大种子, 实现了1900 J、中心波长1054.2 nm、谱宽3 nm的输出, 发次能量稳定性 < 1.8 %, 与分析结果一致. 本文结果将对国内基于钕玻璃的高能宽带激光装置建设和改进提供重要的参考依据.
    In order to accurately analyze the broadband pulsed amplification performances of the domestic picosecond petawatt laser system, which uses large aperture N31 or N41 neodymium glass as gain medium, the broadband pulsed amplification model is improved by introducing the actual stimulated emission cross section (SECS) of neodymium glass. Comparing with the SECS under Gaussian approximation, the amplified pulsed spectrum gain narrowing effect with different SECSs are analyzed. It is found that in the actual SECS of N31 neodymium glass laser, the gain-narrowing effect is enhanced, the output energy decreases, gain’s saturation effect weakens, system’s accumulated B integral augments, but the laser system turns insensitive to the center wavelength simultaneously. Based on the Shenguang II high energy picosecond petawatt laser system which uses N31 neodymium glass, the spectral shape, center wavelength, and energy stability of amplified output pulse are simulated by using different SECSs. It is shown that the super-Gaussian spectral shape narrows more greatly than Gaussian spectral shape, the spectrum bandwidth narrows from 10 to about 3 nm with gain larger than 107, and the accumulated B integral increases to 1.7. Additionally, the gain-narrowing effect makes the output spectrum (with 1054 nm of center wavelength) less affected by changing the inputted center wavelength from 1052 to 1056 nm, and the gain saturation effect can improve output energy stability to less than 2% (root mean square (RMS)) with about 3% (RMS) inputted energy stability, which are beneficial to the subsequent pulse compression and physical experiment. Based on the above analysis, a broadband pulsed amplified experiment is conducted by using Shenguang II petawatt laser system, the injected seed is about 10 nm (full width at half maximum (FWHM)) with 5 order super Gaussian shape at 1054-nm center wavelength, and 1.2 mJ with 3% (RMS) energy stability from optical parametric chirped pulse amplification. The amplified pulse with 1900 J at 1054.2 nm (3 nm FWHM) and stability < 2% (shot to shot) is achieved, and the spectral shapes and bandwidths after bar and disk amplifiers are measured, which are consistent with theoretical analysis results. The results can provide a necessary reference for constructing high energy broadband laser system and improving its performances in the future.
      通信作者: 王韬, Taowang@siom.ac.cn ; 卢兴强, xingqianglu@siom.ac.cn
    • 基金项目: 张江国家自主创新示范区专项发展资金重点项目(批准号: ZJ2020-ZD-006)资助的课题
      Corresponding author: Wang Tao, Taowang@siom.ac.cn ; Lu Xing-Qiang, xingqianglu@siom.ac.cn
    • Funds: Project supported by the Key Projects of Special Development Funds for Zhangjiang National Innovation Demonstration Zone (Grant No. ZJ2020-ZD-006)
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [3]

    Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [4]

    Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar

    [5]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [6]

    Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar

    [9]

    Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933

    [10]

    Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87

    [11]

    Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar

    [12]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172

    [13]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [14]

    Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198

    [15]

    李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 物理学报 57 4898Google Scholar

    Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar

    [16]

    赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 3977Google Scholar

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar

    [18]

    Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar

    [19]

    Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar

    [20]

    卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar

    Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar

    [21]

    管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar

    Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar

    [22]

    杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)

    [23]

    Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar

    [24]

    刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar

    Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar

    [25]

    Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248

    [26]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

  • 图 1  国内N31型磷酸盐钕玻璃实际SECS和高斯近似SECS对比

    Fig. 1.  The compared SECSs between real N31 glass and Gaussian approximation.

    图 2  小信号增益下, 10 nm (FWHM)高斯型光谱注入时, 不同SECS下增益窄化分析结果的对比 (a) 10 nm (FWHM)高斯光谱注入; (b) 高斯SECS和实际SECS下光谱窄化分析结果对比

    Fig. 2.  In small-signal-gain regime and input of 10 nm (FWHM) Gaussian spectrum, the compared results of gain narrowing by different SECSs: (a) Input of 10 nm(FWHM) Gaussian spectrum; (b) the results of gain narrowing by Gaussian SECS and real SECS.

    图 3  采用不同SECS时, 增益窄化对输出光谱宽度影响的对比分析 (a) 10 nm(FWHM), 5阶超高斯注入光谱; (b)采用高斯SECS和实际SECS时, 光谱窄化分析结果对比

    Fig. 3.  The influence results of gain narrowing to spectrum bandwidth by different SECSs: (a) Input of 10 nm (FWHM), 5-order super-Gaussian spectrum; (b) the compared gain narrowing results between Gaussian SECS and real SECS.

    图 4  不同SECS 下, 棒放(a), (b)和片放(c), (d)输出光谱形状及上能级粒子变化分析结果的对比

    Fig. 4.  The compared numerical results of spectrum and upper state population after 70 (a), (b) and 350 (c), (d) amplifier, which influenced by different SECSs.

    图 5  不同SECS下, 注入种子中心波长变化对放大光谱特性的影响, 其他参数与图4(c)相同 (a) 不同中心波长的注入光谱; (b) 高斯SECS下的放大光谱; (c) 实际SECS下的放大光谱

    Fig. 5.  The influences of different inputted center wavelength spectrums to amplified spectrum by different SECSs: (a) Input spectrums of different center wavelength; the amplified spectrums by Gaussian SECS (b) and real SECS (c).

    图 6  不同SECS 下, 宽频带激光放大输出和输入能量抖动性的分析曲线对比

    Fig. 6.  The simulation relationship between input and output energy jitter by different SECSs.

    图 7  神光Ⅱ拍瓦激光系统宽频带激光传输放大示意图

    Fig. 7.  Block diagram of SG II PW laser amplification chain.

    图 8  10 nm(FWHM), 5阶超高斯光谱注入, 输出1866 J时, 棒放和片放位置的实验数据与图4理论分析结果的对比 (a) 输入光谱实验及拟合数据; 棒放(b)和片放(c)位置光谱对比

    Fig. 8.  The compared results between experiment and simulation results after bar and disk amplifiers: (a) The compared input spectrums of experiment and simulation; the compared spectrum results after rob amplifier (b) and disk amplifier (c).

    表 1  注入1.2 mJ, 5 ns, 10 nm宽带种子, 不同SECS下, 棒放和片放输出位置主要参数分析结果对比.

    Table 1.  Input a 1.2 mJ, 5 ns, 10 nm broadband seed, and the main simulation parameters after bar and disk amplifier, which influenced by different SECSs.

    位置激光参数实际SECS高斯SECS
    棒放能量/J24.4334.23
    光谱谱宽/nm3.66
    中心波长/nm10541054.5
    B0.240.22
    片放能量/J19572369
    光谱宽度/nm3.14.5
    中心波长/nm1054.21055.5
    B1.71.57
    下载: 导出CSV

    表 2  利用神光II高能拍瓦宽频带激光系统得到的实验数据.

    Table 2.  The experiment results of amplified broadband laser by using SG II PW laser amplification chain.

    参数发次1发次2发次3发次4
    实际输出/J1482164217111866
    光谱宽度/nm3.13.23.03.0
    中心波长/nm105410541054.11054.2
    预估能量/J1500165017001900
    偏差/%1.20.50.61.8
    下载: 导出CSV
  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [2]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [3]

    Backus S, Durfee Ⅲ C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [4]

    Korzhimanov A V, Gonoskov A A, Khazanov E A, Sergeev A M 2011 Phys. Usp. 54 9Google Scholar

    [5]

    Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [6]

    Mourou G A, Sergeev A M, Korzhimanov A V, Gonoskov A A, Khazanov E A 2011 Her. Russ. Acad. Sci. 81 211Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, et al. 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Cai H B, Wu S Z, Wu J F, Chen M, Zhang H, He M Q, Cao L H, Zhou C T, Zhu S P, He X T 2014 High Power Laser Sci. Eng. 2 e6Google Scholar

    [9]

    Perry M D, Shore B W 1996 Petawatt Laser Report UCRL-ID-124933

    [10]

    Danson C N, Brummitt P A, Clarke R J, et al. 2005 Laser Part. Beams 23 87

    [11]

    Kitagawa Y, Fujita H, Kodama R, et al. 2004 IEEE J. Quantum Electron. 40 281Google Scholar

    [12]

    Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y, Zhu J Q 2008 Rev. Laser Eng. (Suppl.) 1172

    [13]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [14]

    Yamakawa K, Guo T, Korn G, Blanc G L, Raksi F, Rose-Petruck C G, Squier J A, Yakovlev V V, Barty C P J 1996 Proc. SPIE. Int. Soc. Opt. Eng. 2701 198

    [15]

    李铭, 张彬, 戴亚平, 王韬, 范正修, 黄伟 2008 物理学报 57 4898Google Scholar

    Li M, Zhang B, Dai Y P, Wang T, Fan Z X, Huang W 2008 Acta Phys. sin. 57 4898Google Scholar

    [16]

    赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 物理学报 58 3977Google Scholar

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 3977Google Scholar

    [17]

    张颖, 魏晓峰, 朱启华, 谢旭东, 王凤蕊, 曾小明, 应纯同 2008 光学学报 28 1767Google Scholar

    Zhang Y, Wei X F, Zhu Q H, Xie X D, Wang F R, Zeng X N, Ying C T 2008 Acta Optic. Sin. 28 1767Google Scholar

    [18]

    Chuang Y H, Zheng L, Meyerhofer D D 1993 IEEE J. Quantum Electron. 29 270Google Scholar

    [19]

    Ross I N, Trentelman M, Danson C N 1997 Appl. Opt. 36 9348Google Scholar

    [20]

    卢兴强, 范滇元, 钱列加 2001 光学学报 22 1059Google Scholar

    Lu X Q, Fan D Y, Qian L J 2001 Acta Optic. Sin. 22 1059Google Scholar

    [21]

    管相合, 张艳丽, 张军勇, 朱健强 2020 中国激光 47 0901005Google Scholar

    Guan X H, Zhang Y L, Zhang J Y, Zhu J Q 2020 Chin. J. Lasers 47 0901005Google Scholar

    [22]

    杨冬 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Yang D 2009 M. S. Thesis (Mianyang: Chinese Academy of Engineering Physics) (in Chinese)

    [23]

    Hillier D, Danson C, Duffield S, et al. 2013 Appl. Opt. 52 4258Google Scholar

    [24]

    刘兰琴, 张颖, 王文义, 黄晚晴, 莫磊, 郭丹, 景峰 2012 强激光与粒子束 24 1718Google Scholar

    Liu L Q, Zhang Y, Wang W Y, Huang W Q, Mo L, Guo D, Jing F 2012 High Pow. Las. Part. Beam. 24 1718Google Scholar

    [25]

    Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J, Xu Y C 2008 Acta Photon. Sin. 37 248

    [26]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

  • [1] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [2] 张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光. 基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形. 物理学报, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [3] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究. 物理学报, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [4] 黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪. 激光二极管抽运氦气冷却钕玻璃叠片激光放大器热致波前畸变和应力双折射的数值模拟和实验研究. 物理学报, 2015, 64(8): 087801. doi: 10.7498/aps.64.087801
    [5] 王英才, 杨春兰, 王磊, 靳晔. 加长棒脉冲钕玻璃激光器异常实验现象理论研究. 物理学报, 2012, 61(19): 194207. doi: 10.7498/aps.61.194207
    [6] 刘兰琴, 莫磊, 罗斌, 粟敬钦, 王文义, 王方, 景峰, 魏晓峰. 混合加宽的宽带钕玻璃激光系统的放大特性研究. 物理学报, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [7] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 用于补偿增益窄化效应的Rugate滤波器设计. 物理学报, 2009, 58(6): 3977-3982. doi: 10.7498/aps.58.3977
    [8] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲. 物理学报, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [9] 李 铭, 张 彬, 戴亚平, 王 韬, 范正修, 黄 伟. 用于钕玻璃啁啾脉冲放大系统光谱整形的多层介质膜反射镜. 物理学报, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [10] 赵书林, 朱宝强, 詹庭宇, 蔡希洁, 刘仁红, 杨 琳, 张志祥, 毕纪军. 高功率钕玻璃激光三倍频脉冲时间波形的研究. 物理学报, 2006, 55(8): 4170-4175. doi: 10.7498/aps.55.4170
    [11] 楚晓亮, 张 彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王 逍, 王晓东, 周凯南, 郭 仪. 啁啾脉冲多程放大及其逆问题的研究. 物理学报, 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [12] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [13] 张华, 范滇元. 组合式钕玻璃片状激光放大器增益性能的动态模拟. 物理学报, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
    [14] 张 华, 范滇元. 钕玻璃片状激光放大器自发辐射放大特性的研究. 物理学报, 2000, 49(6): 1047-1051. doi: 10.7498/aps.49.1047
    [15] 黄国松, 周烽, 顾绍庭, 张国轩, 陈泽兴. 钕玻璃圆筒激光器的热畸变. 物理学报, 1990, 39(3): 367-374. doi: 10.7498/aps.39.367
    [16] 王桂英, 赵九源, 张明科, 范滇元, 崔志光. 钕玻璃高功率激光系统中的空间滤波器的基本研究. 物理学报, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
    [17] 陈述春, 戴凤妹. 掺Nd3+激光玻璃的激光窄线选择激发. 物理学报, 1981, 30(4): 497-502. doi: 10.7498/aps.30.497
    [18] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 殷光裕, 何兴法. 六束高功率钕玻璃激光器. 物理学报, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
    [19] 邓和. 终态寿命对钕玻璃激光放大器的影响. 物理学报, 1979, 28(3): 377-382. doi: 10.7498/aps.28.377
    [20] 王守武, 庄蔚华, 彭怀德, 庄婉如. 砷化镓p-n结的受激发射的光谱特性. 物理学报, 1965, 21(5): 1077-1079. doi: 10.7498/aps.21.1077
计量
  • 文章访问数:  3781
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-02-22
  • 上网日期:  2021-05-10
  • 刊出日期:  2021-05-20

/

返回文章
返回