-
人工地面甚低频台站发射的10—30 kHz信号主要在地球—低电离层波导传播, 部分能量会泄露进入内磁层, 进而会影响近地空间中高能电子的动态变化过程. 本文详细研究了NWC, NAA和DHO38三个人工甚低频台站信号对内辐射带和槽区高能电子的散射作用. 基于准线性理论, 分别计算了三个甚低频台站信号单独和共同作用时对高能电子的弹跳平均投掷角扩散系数, 并进一步利用Fokker-Planck扩散方程模拟内辐射带及槽区的高能电子在200 d内的动态演化过程. 结果表明, 在低L-shell (L ≤ 1.8), NWC台站信号对电子的损失占主导作用, 可以使能量在100 keV附近、投掷角小于60°的电子出现明显损失; 在较高的L-shell (2.2 ≤ L ≤ 2.7), 主要是NAA和DHO38台站信号占主导作用, 可以使能量小于20 keV、投掷角小于70°的电子通量显著下降; 三个甚低频台站信号对高投掷角(> 80°)的电子均无显著影响.Whistler mode very low frequency (VLF) waves from man-made ground-based transmitters in a frequency range of 10–30 kHz are mainly used for submarine communication, and they propagate primarily in the Earth-lower ionosphere waveguide and part of their energy can leak into the inner magnetosphere, leading the energetic electrons in inner radiation belt and slot region to precipitate into atmosphere and then affect the energetic electron dynamics in the near-Earth space. The scattering effects of artificial VLF signals from NWC, NAA and DHO38 transmitters on energetic electrons in Earth’s inner belt and slot region are investigated in detail in this work. Based on the quasi-linear theory and the Full Diffusion Code, we calculate the bounce-average pitch angle diffusion coefficients induced by NWC, NAA and DHO38 VLF transmitter signals, for which the resonance harmonics |N| ≤ 10 are considered, respectively. We further implement the one-dimensional Fokker-Planck diffusion simulations by using the available pitch angle diffusion rates to model the dynamic evolutions of energetic electrons caused by the scattering of the VLF transmitter signals in the inner belt and slot region in 200 d. The simulation results indicate that the NWC VLF transmitter signals are dominant in scattering ~100 keV electrons with pitch angles less than 60° at L ≤ 1.8, and the mainly scattered electron energy values increase with L-shell decreasing , from L = 1.8 to L = 1.5, the mainly scattered electron energy increases from 90–120 keV to 550–650 keV. The NAA and DHO38 VLF transmitter signals are important in scattering < 20 keV electrons with pitch angles less than 70° at higher L-shells (2.2 ≤ L ≤ 2.7), from L = 2.2 to L = 2.7, the mainly scattered electron energy decreases from 10–20 keV to several keV. The VLF transmitter signals are found to have a slight influence on the loss of energetic electrons with pitch angles larger than 80°.
1. 引 言
边界层感受性的物理过程是层流向湍流转捩的初始阶段, 是边界层转捩过程的预测和控制的重要环节. 1980年代初, Goldstein[1]以及Ruban[2]理论研究了边界层前缘感受性机制[3,4]. 随后, Goldstein [5]利用三层结构理论研究了在声波扰动与二维壁面局部粗糙作用下边界层感受性的过程, 即当地感受性问题, 所取得的结果得到了Saric 等[6]以及 Wiegel和Wlezien[7]实验结果的验证. Dietz[8-10]通过一系列实验证明了在自由来流涡扰动和壁面局部粗糙作用下边界层当地感受性过程是真实存在的. 随后, Wu[11,12]利用二阶精度渐进法理论研究了自由来流涡扰动作用下边界层当地感受性问题, 所取得的计算结果与Dietz的实验结果完全一致, 并且还确定了边界层当地感受性与自由来流涡扰动的幅值, 壁面局部粗糙几何形状、位置和数量之间的内在联系. 我们也通过DNS[13,14]充分验证了该结论. Würz 等[15] 以及Shen和Lu[16]实验和数值研究了在声波和涡波扰动与三维壁面局部粗糙相互作用下边界层当地感受性问题, 并在边界层内被激发出了一组呈扇形区域向下游传播的三维T-S波, 计算发现了当地感受性系数与三维T-S波展向波数和声波频率密切关联. 陆昌根和沈露予[17]研究了在自由来流湍流和壁面局部吹吸作用下边界层感受性机制, 同样获得与Dietz实验相同的结论, 并建立了自由来流湍流度, 壁面局部吹吸强度和长度与边界层感受性问题之间的联系等.
综上所述, 现有的研究成果已经确定了边界层当地感受性机制与自由来流扰动幅值、壁面局部粗糙和吹吸的几何形状以及位置等其他因素之间的关系; 很少见到有关压力梯度对边界层感受性问题影响研究的相关报道; 直到最近, Johnson和Pinarbasi[18]数值研究了有压力梯度边界层感受性问题, 并发现边界层内被激发出的T-S波的增长率与压力梯度紧密相关. 但是, 有关压力梯度对壁面局部吹吸边界层感受性问题影响的相关研究报道却十分少见. 因此, 本文通过直接数值模拟方法研究在自由来流湍流分别与壁面局部吹入和吸出相互作用下, 有压力梯度对壁面局部吹入和吸出边界层当地感受性问题的影响, 从而填补了压力梯度对边界层当地感受性影响研究的空缺, 并且丰富、完善了流动稳定性理论.
2. 基本方程和数值计算方法
2.1 基本方程
选取边界层的位移厚度δ*、无穷远来流速度U∞和流体密度ρ为特征物理量, 将不可压Navier-Stokes (N-S)方程无量纲化, 得无量纲N-S方程:
{∇⋅V=0,∂V∂t+(V⋅∇)V=−∇p+1Re∇2V, (1) 式中 p为压力; Re为雷诺数(Re = (U∞δ*)/υ), 且υ为运动黏性系数; V为速度(V = U+V′), 且V′ 为扰动速度(V′ = {u, v}T)以及U为基本流. 以不同压力梯度系数(
βH=2m/m+1 , 滑移速度Ue=(x/x0)m )情况下Falkner-Skan边界层流的理论解为边界条件求解N-S方程, 获得基本速度场U(注:βH>0 为顺压力梯度,βH<0 为逆压力梯度).2.2 数值计算方法
数值计算方法为: 时间偏导数项用四阶修正后的Runge-Kutta格式推进; 空间偏导数项用非等间距的紧致有限差分; 例如: 对流偏导数项用五阶迎风紧致有限差分、压力梯度偏导数项用六阶紧致有限差分、黏性偏导数项用五阶紧致有限差分以及压力泊松方程用三阶非等间距有限差分格式进行迭代求解, 具体数值计算方法的离散格式详见文献[4,17].
2.3 自由来流湍流模型
依据自由来流湍流运动的随机性和不确定性, 推导出自由来流湍流模型[19], 其数学表达式为
u∞=(u∞v∞)=εM∑m=−MJ∑j=−J(ˆu∞ˆv∞)×exp[i(mκ1x+jκ2y−mκ1t)], (2) 其中:
{ˆu∞=imκ1jκ2κ√m2κ12⋅√2E(κ)κ1κ24πκ2⋅eiσ,ˆv∞=−i√m2κ12κ⋅√2E(κ)κ1κ24πκ2⋅eiσ, i=√−1 ; u∞和v∞分别为自由来流湍流在流向和法向扰动分速度, 且ˆu∞ 和ˆv∞ 为扰动速度谱; ε为幅值; M和J为最大模数;κ1 和κ2 分别为x和y向上的基本波数; 流向和法向波数为α=mκ1 和γ=jκ2 , 且κ=(m2κ12+j2κ22)1/2 .ˆu∞ 和ˆv∞ 与一维能量谱E(κ )及相位角σ有关.2.4 计算区域和边界条件
图1所示为本文的数值计算区域: 流向区域x∈[0, 1000]和法向区域(大约选取五倍边界层厚度) y∈[0, 14.39]. x和y向上的网格数为512 × 200, 且x向上采用等间距网格, y向上采用非等间距网格, 这样能使网格在壁面附近流场变化剧烈的区域加密以便获得准确的流场信息. 雷诺数选取为Re = 1000.
上边界条件: 速度由自由来流湍流模型给出; 压力
∂p/∂x=0 .下边界条件: 无滑移条件, 即
u(x,0)=0 ,v(x,0)=0 ,∂p/∂y=0 . 在平板壁面上分别设计壁面局部吹入和吸出, 数学表达式为v(xw,0)=q, (3) 其中, q为壁面局部吹入和吸出的强度, 且q > 0表示为吹入, q < 0 表示为吸出; xw∈[x1, x2]为壁面局部吹吸在平板壁面上的流向长度L = x2 – x1.
入流条件: 速度由自由来流湍流模型给出; 压力
∂p/∂x=0 .出流条件: 速度采用无反射条件, 且数值计算将在边界层内被激发出的小扰动波未到达出流边界前结束; 压力
∂p/∂x=0 .3. 数值计算结果与比较分析
数值研究证明在自由来流湍流分别与壁面局部吹入和吸出相互作用下激发有压力梯度边界层内的当地感受性过程是真实存在的, 具体证明过程与我们近期发表的成果[17]验证步骤完全相同, 这里不再赘述. 本文重点关注不同压力梯度对壁面局部吹入或吸出边界层内被激发产生T-S波波包和群速度的影响, 并详细比较分析不同压力梯度对壁面局部吹入或吸出边界层内被激发产生T-S波的幅值、增长率、波长或波数、相速度以及特征函数等关键参数的作用. 无量纲频率F定义为: F = 2πfυ/U∞2 × 106. 自由来流湍流的流向基本波数选取
κ1 = 0.010, 最大模数M = 8; 壁面局部吹入和吸出的强度以及流向长度分别为q =± 0.001和L = 50, 且流向长度分布在计算区域的范围为xw∈[150, 200];ε= 0.001. 为方便比较分析, 将边界层外缘区域内经长时间(t > 1000)计算获得自由来流湍流的稳定值定义为自由来流湍流度AFST, 其表达式为AFST=√¯uFST2+¯vFST2, (4) 其中
¯uFST2 和¯vFST2 分别为x和y向扰动速度平方的时均值, AFST = 0.5%. 下面给出数值计算t = 2400时刻所获得的数值结果.图2给出了在自由来流湍流和壁面局部吹入相互作用下具有典型压力梯度(βH = 0.1, 0, –0.05)情况下壁面局部吹入边界层内被激发出T-S波波包沿流向的演化. 从图2可知, 在零压力梯度下壁面局部吹入边界层内被激发出T-S波波包沿流向呈现增长的演化趋势, 而顺压力梯度或逆压力梯度分别对壁面局部吹入边界层内被激发出T-S波波包沿流向的演化状态明显起着遏制或激励T-S波波包增长的作用. 同理, 研究在自由来流湍流和壁面局部吸出相互作用下不同压力梯度对壁面局部吸出边界层内被激发出T-S波波包沿流向的演化过程, 结果发现不同压力梯度对壁面局部吸出边界层内被激发出T-S波波包沿流向的演化特性影响与壁面局部吹入边界层内被激发出T-S波波包沿流向的演化过程类同, 其区别是壁面局部吸出对不同压力梯度边界层内被激发出T-S波波包都起到一定的稳定作用. 随后根据不同时刻, 跟踪记录不同压力梯度壁面局部吹入和吸出边界层内被激发出T-S波波包的最大值和最小值的流向位置和时间, 可近似计算获得T-S波波包向前传播的群速度, 结果详见表1. 从表1中可以看出, 壁面局部吹入和吸出边界层内被激发出T-S波波包向前传播的群速度随着压力梯度的不断减少而缓慢衰减; 且壁面局部吹入边界层内被激发出T-S波波包向前传播的群速度略大于壁面局部吸出边界层内被激发出T-S波波包向前传播的群速度.
表 1 压力梯度对边界层内被激发出T-S波波包向前传播的群速度(Cg)的影响Table 1. The group speeds (Cg) of the excited T-S wave packets in the pressure-gradient boundary layers.βH 0.3 0.1 0.05 0 –0.05 –0.1 Cg (吹入) 0.358 0.348 0.343 0.336 0.333 0.331 Cg (吸出) 0.356 0.347 0.341 0.334 0.332 0.329 为便于分析, 在自由来流湍流分别与壁面局部吹入和吸出相互作用下将有压力梯度边界层内被激发出T-S波波包初始幅值定义为AR, 其表达式为
AR=√¯uR2+¯vR2, (5) 其中:
¯uR2 和¯vR2 代表x和y方向上在壁面局部吹入和吸出下游位置处有压力梯度边界层内被激发出T-S波波包的小扰动速度平方的时均值. 图3(a)和图3(b)分别给出了不同吹入和吸出强度情况下有压力梯度边界层内被激发出T-S波波包初始幅值随压力梯度系数βH 的变化. 图3显示, 当压力梯度系数βH 从顺压向逆压力梯度变化时, 壁面局部吹入边界层内激发出T-S波波包初始幅值将缓慢地线性增长; 直至压力梯度系数大约在βH⩽−0.05 之后, 初始幅值将加速增长, 几乎成几何级数增长规律发展; 逆压力梯度越大对边界层内当地感受性能力的作用就越强; 反之, 顺压力梯度越大对边界层内当地感受性能力的作用就越弱. 再根据图3(a)和图3(b)比较还可知, 壁面局部吹入强度越大, 就越容易激励有压力梯度边界层内被诱导出更强的感受性过程; 反之, 壁面局部吸出强度越大, 就越容易阻碍有压力梯度边界层内被诱导出感受性过程的发生; 壁面局部吹入作用激发有压力梯度边界层内被诱导出的T-S波波包初始幅值要远大于壁面局部吸出作用下有压力梯度边界层内被诱导出的T-S波波包初始幅值两个数量级左右. 另外, 从图3(a)和图3(b)比较还发现, 无论是壁面局部吹入还是壁面局部吸出的情况, 边界层内被激发出T-S波波包初始幅值都是随着压力梯度系数的不断减少而快速增长, 这是由于压力梯度在边界层感受性过程中起着主导的作用.随后, 通过快速傅里叶变换, 从有压力梯度壁面局部吹入边界层内被激发出T-S波波包中提取获得最具有代表性频率为F = 40和F = 80的T-S波的流向扰动速度(最大值位置y = 0.66处)沿流向的演化, 如图4(a)和图4(b)所示(图4(a)左边y刻度值对应βH = 0, –0.02被诱导出T-S波的演化, 右边y刻度值对应βH = 0.1被诱导出T-S波的演化; 图4(b)左边y刻度值对应βH = –0.115被诱导出T-S波的演化, 右边y刻度值对应βH = 0, 0.05 被诱导出T-S波的演化). 图4(a)显示, 当频率F = 40时, 在零压力梯度情况下壁面局部吹入边界层内被激发出的是不稳定T-S波; 而逆压力梯度终能促使壁面局部吹入边界层内被激发出更不稳定的T-S波; 反之, 顺压力梯度终能抑制或阻碍壁面局部吹入边界层内被激发出的不稳定T-S波发展, 并可能将壁面局部吹入边界层内被激发出的不稳定T-S波转换成为稳定的T-S波; 图4(b)显示, 当频率F = 80时, 在零压力梯度情况下壁面局部吹入边界层内被激发出稳定的T-S波或衰减T-S波; 而逆压力梯度将可能使壁面局部吹入边界层内被激发出的稳定T-S波转换成不稳定的T-S波; 反之, 顺压力梯度能使壁面局部吹入边界层内被激发出的稳定T-S波趋于更加稳定的T-S波. 同样, 压力梯度对壁面局部吸出边界层内被激发出感受性现象的影响机制与壁面局部吹入边界层内被激发出感受性现象类似, 不同的是壁面局部吸出作用将在一定程度上阻碍或抑制有压力梯度边界层内的感受性过程的发生. 综上所述, 逆压梯度总能使边界层感受性能力增强; 顺压梯度总能抑制或削弱边界层感受性能力.
依据图4展示的有压力梯度边界层内被激发产生T-S波的流向扰动速度在x方向上的空间发展过程, 可近似求得T-S波的波长(或波数)和相速度; 同理可获得其他频率情况下T-S波的波长(
λ )和相速度, 详细结果见表2 (吹入和吸出的强度为± 0.001,αr=2π/λ ). 从表2可知, 随着压力梯度系数βH 的不断增大, 边界层内被激发出相同频率T-S波的波数αr 和相速度C分别缓慢衰减和缓慢增长的演化趋势; 另外, 在壁面局部吹入作用下有压力梯度边界层内被激发产生相同频率T-S波的波数和相速度要分别比壁面局部吸出作用下有压力梯度边界层内被激发产生相同频率T-S波的波数小和相速度大.表 2 压力梯度边界层被激发出的T-S波的流向波数和相速度(αr, C)Table 2. The streamwise wave numbers and phase speeds (αr, C) of the excited T-S wave packets in the pressure-gradient boundary layers.βH –0.1 –0.05 0 0.05 0.1 F = 30(吹) (0.0977, 0.3071) (0.0960, 0.3125) (0.0949, 0.3161) (0.0934, 0.3212) (0.0915, 0.3279) F = 30(吸) (0.0984, 0.3049) (0.0967, 0.3102) (0.0956, 0.3138) (0.0943, 0.3181) (0.0923, 0.3250) F = 40(吹) (0.1262, 0.3169) (0.1251, 0.3197) (0.1240, 0.3226) (0.1218, 0.3284) (0.1204, 0.3322) F = 40(吸) (0.1269, 0.3152) (0.1257, 0.3182) (0.1248, 0.3205) (0.1226, 0.3263) (0.1210, 0.3306) F = 50(吹) (0.1533, 0.3262) (0.1522, 0.3285) (0.1514, 0.3303) (0.1489, 0.3357) (0.1470, 0.3401) F = 50(吸) (0.1541, 0.3245) (0.1531, 0.3266) (0.1521, 0.3287) (0.1497, 0.3340) (0.1477, 0.3385) F = 60(吹) (0.1792, 0.3348) (0.1784, 0.3363) (0.1772, 0.3386) (0.1755, 0.3419) (0.1735, 0.3458) F = 60(吸) (0.1799, 0.3335) (0.1792, 0.3348) (0.1780, 0.3371) (0.1763, 0.3403) (0.1744, 0.3440) F = 70(吹) (0.2047, 0.3419) (0.2036, 0.3438) (0.2020, 0.3465) (0.2004, 0.3493) (0.1985, 0.3526) F = 70(吸) (0.2055, 0.3406) (0.2043, 0.3426) (0.2028, 0.3451) (0.2012, 0.3479) (0.1993, 0.3512) F = 80(吹) (0.2287, 0.3498) (0.2279, 0.3510) (0.2267, 0.3529) (0.2249, 0.3557) (0.2234, 0.3581) F = 80(吸) (0.2295, 0.3486) (0.2286, 0.3500) (0.2276, 0.3515) (0.2261, 0.3538) (0.2244, 0.3565) 进一步分析压力梯度对壁面局部吹入边界层内被激发出T-S波的幅值和增长率的影响. 将边界层内被激发出T-S波的幅值定义为ATS, 其表达式为
ATS=√¯uTS2+¯vTS2, (8) 其中:
¯uTS2 和¯vTS2 代表x和y方向上有压力梯度边界层内被激发出T-S波的扰动速度平方的时均值.图5(右边y刻度值对应的是零压和顺压梯度, 左边y刻度值对应逆压梯度)和图6给出了几种典型压力梯度情况下壁面局部吹入边界层内被激发出的具有代表性频率T-S波的幅值和增长率随流向的演变. 当频率F = 40时, 从图5(a)和图6(a)可见: 逆压力梯度能促使壁面局部吹入边界层内被诱导产生的不稳定T-S波模态转换成为更不稳定T-S波模态, 其幅值向下游加速增长以及在整个下游发展过程中的增长率始终大于零, 且增长速率明显大于零压和顺压梯度情况; 顺压力梯度使得壁面局部吹入边界层内被诱导产生的不稳定T-S波模态可能转换成为稳定T-S波模态, 其幅值向下游快速衰减以及在整个下游发展过程中的增长率始终小于零, 且增长速率明显小于零压和逆压梯度情况; 这一结果与eN法和线性理论解完全吻合. 当频率F = 80时, 从图5(b)和图6(b)可见: 逆压力梯度有可能使壁面局部吹入边界层内被诱导产生的稳定T-S波模态转换成为不稳定T-S波模态, 其幅值向下游快速增长以及在整个下游演化过程中的增长率始终大于零, 且增长速率明显大于零压和顺压梯度情况; 顺压力梯度总能使得壁面局部吹入边界层内被诱导产生稳定T-S波模态转换成为更加稳定T-S波模态.
分别考虑在自由来流湍流分别与壁面局部吹入和吸出作用下, 讨论在不同顺压和逆压梯度情况下边界层内被激发产生T-S波波包的初始幅值分别与吹入和吸出强度之间的关系, 详见图7所示. 图7(a)和图7(b)分别表示不同顺压和逆压梯度边界层内被激发产生T-S波波包的初始幅值与吹入强度之间的关系, 其中图7(b)左边y刻度值对应压力梯度系数βH = –0.012, –0.02和–0.05时的初始幅值, 右边y刻度值对应压力梯度系数βH = –0.1和–0.11时的初始幅值; 图7(c)和图7(d)分别表示不同顺压和逆压梯度边界层内被激发产生T-S波波包的初始幅值与吸出强度之间的关系, 其中图7(d)左边y刻度值对应压力梯度系数βH = –0.012, –0.02和–0.05时的初始幅值, 右边y刻度值对应压力梯度系数βH = –0.1和–0.11时的初始幅值. 由图7(a)和图7(b)可知, 当壁面局部吹入强度不断增强时, 压力梯度系数的不断减少都将促使边界层内被激发出 T-S波波包的初始幅值快速增长; 顺压梯度情况下边界层内被激发出 T-S波波包的初始幅值始终比逆压梯度情况下边界层内被激发出 T-S波波包的初始幅值大约要小两个数量级左右. 从图7(c)可知, 当壁面局部吸出强度不断增强时, 顺压梯度系数的不断减少都将先促使边界层内被激发出 T-S波波包的初始幅值较快的增长; 直至壁面局部吸出强度等于–0.0024之后开始阻碍边界层内被激发出 T-S波波包的初始幅值发展; 其原因是壁面局部吸出和顺压梯度两者都能抑制或阻碍不稳定波增长的作用所导致波包初始幅值较快地衰减. 从图7(d)可知, 当壁面局部吸出强度不断增强时, 逆压梯度的不断增强都将先促使边界层内被激发出 T-S波波包的初始幅值较快的增长; 直至壁面局部吸出强度等于–0.002之后将抑制或阻碍边界层内被激发出 T-S波波包的初始幅值增长, 并趋于较缓慢衰减和平稳发展的状态; 其原因是壁面局部吸出始终抑制不稳定波的增长和逆压梯度始终激励不稳定波的增长两者相互作用所导致不稳波趋于缓慢衰减或平稳发展态势.
最后, 选取几种典型压力梯度的壁面局部吹入边界层内被激发出最具有代表频率(F = 40) T-S波为例, 分析其特征形状函数的幅值和相位沿法向的演变. 图8展示的结果已被零压梯度情况下壁面局部吹入边界层内被激发出T-S波的最大幅值
|u0| 归一化. 图8显示, 几种典型压力梯度壁面局部吹入边界层内被激发出T-S波的特征形状函数的幅值沿法向变化的分布状态是相似的; 但是, 压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数幅值沿法向变化的影响是相当明显的, 即逆压力梯度明显大于零压和顺压力梯度的作用, 这说明逆压力梯度对边界层内被激发出的感受性能力较强; 另外, 从图9也可发现, 有压力梯度壁面局部吹入边界层内被激发出T-S波的相位沿法向变化与线性理论解也吻合一致, 且压力梯度对壁面局部吹入边界层内被激发出T-S波的相位沿法向变化的影响很小. 同理, 压力梯度对壁面局部吸出边界层内被激发出T-S波的特征形状函数的幅值和相位沿法向变化的影响相同; 其主要区别是压力梯度对壁面局部吸出边界层内被激发出T-S波的特征形状函数幅值沿法向变化的影响要明显小于壁面局部吹入的情况.4. 结 论
本文直接数值模拟研究了在自由来流湍流分别与壁面局部吹入和吸出相互作用下压力梯度对壁面局部吹入或吸出边界层感受性的影响, 获得了如下结论:
1)逆压力梯度始终对壁面局部吹入或吸出边界层内被诱导出的感受性过程起着激励或促进增长的作用, 而顺压力梯度总是对壁面局部吹入或吸出边界层内被诱导出的感受性过程起着抑制或削弱的作用; 且压力梯度对壁面局部吹入边界层内被激发出的感受性能力的影响始终远大于壁面局部吸出边界层内被激发出的感受性能力, 其量级约大两个数量级左右; 也就是说壁面局部吹入有利于激励边界层感受性过程的发生而壁面局部吸出总是阻碍边界层感受性过程的产生;
2)逆压力梯度能加速壁面局部吹入或吸出边界层内被激发出的不稳定T-S波模态转换为更不稳定的T-S波模态; 并且, 逆压力梯度也可能将壁面局部吹入或吸出边界层内被激发出的稳定T-S波模态转换为不稳定T-S波模态; 反之, 顺压力梯度将能抑制或阻碍壁面局部吹入或吸出边界层内被激发出的不稳定T-S波模态发展, 并可能将已被激发出的不稳定T-S波模态转换成为稳定的T-S波模态以及顺压力梯度总能将壁面局部吹入或吸出边界层内被激发出的稳定T-S波模态转换为更加稳定的T-S波模态, 也就是说压力梯度是边界层内被感受出不稳定T-S波模态转换机制的关键性因素;
3)压力梯度对壁面局部吹入或吸出边界层内被激发出的T-S波波包和单个T-S波的初始幅值都有明显的影响, 且逆压力梯度对壁面局部吹入或吸出边界层内被激发出的T-S波波包和单个T-S波的初始幅值比顺压力梯度情况约大两个数量级左右; 但是, 压力梯度对壁面局部吹入或吸出边界层内被激发出的T-S波波包向前传播的群速度以及在边界层内被激发出T-S波的增长率、波长或波数和相速度有一定程度的影响;
4)无论是逆压力梯度还是顺压力梯度对壁面局部吹入或吸出边界层内被激发出T-S波的特征形状函数幅值沿法向的分布是相似的; 但是, 逆压力梯度对壁面局部吹入或吸出边界层内被激发出T-S波的特征形状函数幅值要明显大于顺压力梯度情况, 其原因是逆压力梯度边界层内被感知的感受性能力较强所致; 不管何种压力梯度对壁面局部吹入或吸出边界层内被激发出T-S波的特征形状函数的相位沿法向分布的影响很小, 其分布规律类似.
[1] Xiang Z, Tu W, Li X, Ni B, Morley S K, Baker D N 2017 J. Geophys. Res. Space Phys. 122 9858
Google Scholar
[2] Xiang Z, Tu W, Ni B, Henderson M G, Cao X 2018 Geophys. Res. Lett. 45 8035
Google Scholar
[3] Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598
Google Scholar
[4] Rosen A, Sanders N L 1971 J. Geophys. Res. 76 110
Google Scholar
[5] Selesnick R S 2015 J. Geophys. Res. Space Phys. 120 2912
Google Scholar
[6] Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919
Google Scholar
[7] Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2019JA027678
[8] Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042
[9] Zhang K, Li X, Zhao H, Schiller Q, Khoo L Y, Xiang Z, Selesnick R, Temerin M A, Sauvaud J A 2019 Geophys. Res. Lett. 46 544
Google Scholar
[10] Ni B, Hua M, Zhou R, Yi J, Fu S 2017 Geophys. Res. Lett. 44 3465
Google Scholar
[11] Hua M, Ni B, Fu S, Gu X, Xiang Z, Cao X, Zhang W, He Y, Huang H, Lou Y, Zhang Y 2018 Geophys. Res. Lett. 45 10057
Google Scholar
[12] Rodger C J, Clilverd M A, McCormick R J 2003 J. Geophys. Res. 108 1462
Google Scholar
[13] Clilverd M A, Rodger C J, Nunn D 2004 J. Geophys. Res. A 109 12208
Google Scholar
[14] Green A, Li W, Ma Q, Shen X C, Bortnik J, Hospodarsky G B 2020 Geophys. Res. Lett. 47 e2020GL089584
[15] Ma Q, Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B 2016 J. Geophys. Res. Space Phys. 121 274
Google Scholar
[16] 顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正 2020 地球物理学报 63 2121
Google Scholar
Gu X D, He Y, Ni B B, Fu S, Hua M, Xiang Z 2020 Chin. J. Geophys. 63 2121
Google Scholar
[17] Ni B, Yan L, Fu S, Gu X, Cao X, Xiang Z, Zhang Y 2020 Geophys. Res. Lett. 47 e2019GL086487
[18] Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483
Google Scholar
[19] Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Phys. 124 5260
Google Scholar
[20] Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847
Google Scholar
[21] Chen Y P, Yang G B, Ni B B, Zhao Z Y, Gu X D, Zhou C, Wang F 2016 Adv. Space Res. 57 1871
Google Scholar
[22] Chen Y, Ni B, Gu X, Zhao Z, Yang G, Zhou C, Zhang Y 2017 Sci. Chin. Technol. Sci. 60 166
Google Scholar
[23] 易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安 2019 地球物理学报 62 3223
Google Scholar
Yi J, Gu X D, Li Z P, Lin R T, Cai Y H, Chen L, Ni B B, Yue X A 2019 Chin. J. Geophys. 62 3223
Google Scholar
[24] Yi J, Gu X, Cheng W, Tang X, Chen L, Ni B, Zhou R, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 238
Google Scholar
[25] Zhou R, Gu X, Yang K, Li G, Ni B, Yi J, Chen L, Zhao F, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 120
Google Scholar
[26] Vampola A L, Kuck G A 1978 J. Geophys. Res. 83 2543
Google Scholar
[27] Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. 86 640
Google Scholar
[28] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397
Google Scholar
[29] Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J J 2008 J. Geophys. Res. A 113 10211
Google Scholar
[30] Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. A 114 07205
Google Scholar
[31] Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Phys. 118 628
Google Scholar
[32] Agapitov O V, Artemyev A V, Mourenas D, Kasahara Y, Krasnoselskikh V 2014 J. Geophys. Res. Space Phys. 119 2876
Google Scholar
[33] Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056
Google Scholar
[34] Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361
Google Scholar
[35] Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophys. Res. 90 359
Google Scholar
[36] 王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 物理学报 60 039401
Google Scholar
Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401
Google Scholar
[37] Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101
Google Scholar
[38] Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J J, Thomson N R 2008 J. Geophys. Res. A 113 04211
Google Scholar
[39] Kulkarni P, Inan U S, Bell T F, Bortnik J 2008 J. Geophys. Res. A 113 07214
Google Scholar
[40] 张振霞, 王辰宇, 李强, 吴书贵 2014 物理学报 63 079401
Google Scholar
Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401
Google Scholar
[41] 罗旭东, 牛胜利, 左应红 2015 物理学报 64 069401
Google Scholar
Luo X D, Niu S L, Zuo Y H 2015 Acta Phys. Sin. 64 069401
Google Scholar
[42] Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Phys. 124 5246
Google Scholar
[43] Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res. A 117 06225
Google Scholar
[44] Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. A 116 10207
Google Scholar
[45] Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106
Google Scholar
[46] Ma Q, Artemyev A V, Mourenas D, Li W, Thorne R M, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Wygant J 2017 Geophys. Res. Lett. 44 12057
[47] Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. A 114 03201
Google Scholar
[48] Xiao F, Shen C, Wang Y, Zheng H, Wang S 2008 J. Geophys. Res. A 113 05203
Google Scholar
-
图 2 NWC台站信号在L = 1.5—2.2导致的电子弹跳平均投掷角扩散系数
⟨Dαα⟩ . 图中横坐标为赤道投掷角αeq , 纵坐标为电子能量Ek , 颜色表示扩散系数的大小Fig. 2. The color-code bounce-averaged pitch angle diffusion coefficients
⟨Dαα⟩ as a function of equatorial pitch angleαeq and electron kinetic energyEk induced by VLF transmitter signals from NWC at L = 1.5–2.2.图 4 DHO38台站信号在L = 1.7−2.9导致的电子弹跳平均投掷角扩散系数. 格式同图2
Fig. 4. Same as in figure 2 except for VLF transmitter signals from DHO38 at L = 1.7−2.9.
图 5 在L = 1.8处, 不同VLF台站信号对电子散射效果的模拟, 从左至右分别为NWC, NAA, DHO38台站信号单独散射和三个台站信号联合散射 (a1)−(d4)不同模拟时间的电子相空间密度分布二维图, 颜色表示电子相空间密度的大小; (e1)−(h4)指定能级电子的相空间密度随时间演化的过程图, 线条颜色表示不同的时间
Fig. 5. (a1)−(d4) Two dimensional distributions of color-code electron phase space density (PSD) as a function of equatorial pitch angle
αeq and electron kinetic energyEk at the indicated interaction time stamps at L = 1.8 induced by different VLF transmitter signals (from left to right): NWC, NAA, DHO38 individual scattering and combined scattering; (e1)−(h4) temporal evolution of electron PSD distribution as a function ofαeq for the indicated four electron energies at the color-coded interaction time stamps.表 1 选取计算的台站信息
Table 1. The information of the three selected VLF transmitters.
台站 频率/kHz 功率/kW 经纬度 L-shell 磁层中波幅范围/L NWC 19.8 1000 21.8°S 114.2°E 1.42 1.5—2.2 NAA 24.0 1000 44.6°N 67.3°W 2.74 1.7—3.0 DHO38 23.4 300 53.1°N 7.6°E 2.38 1.7—2.9 -
[1] Xiang Z, Tu W, Li X, Ni B, Morley S K, Baker D N 2017 J. Geophys. Res. Space Phys. 122 9858
Google Scholar
[2] Xiang Z, Tu W, Ni B, Henderson M G, Cao X 2018 Geophys. Res. Lett. 45 8035
Google Scholar
[3] Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598
Google Scholar
[4] Rosen A, Sanders N L 1971 J. Geophys. Res. 76 110
Google Scholar
[5] Selesnick R S 2015 J. Geophys. Res. Space Phys. 120 2912
Google Scholar
[6] Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919
Google Scholar
[7] Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2019JA027678
[8] Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042
[9] Zhang K, Li X, Zhao H, Schiller Q, Khoo L Y, Xiang Z, Selesnick R, Temerin M A, Sauvaud J A 2019 Geophys. Res. Lett. 46 544
Google Scholar
[10] Ni B, Hua M, Zhou R, Yi J, Fu S 2017 Geophys. Res. Lett. 44 3465
Google Scholar
[11] Hua M, Ni B, Fu S, Gu X, Xiang Z, Cao X, Zhang W, He Y, Huang H, Lou Y, Zhang Y 2018 Geophys. Res. Lett. 45 10057
Google Scholar
[12] Rodger C J, Clilverd M A, McCormick R J 2003 J. Geophys. Res. 108 1462
Google Scholar
[13] Clilverd M A, Rodger C J, Nunn D 2004 J. Geophys. Res. A 109 12208
Google Scholar
[14] Green A, Li W, Ma Q, Shen X C, Bortnik J, Hospodarsky G B 2020 Geophys. Res. Lett. 47 e2020GL089584
[15] Ma Q, Li W, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B 2016 J. Geophys. Res. Space Phys. 121 274
Google Scholar
[16] 顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正 2020 地球物理学报 63 2121
Google Scholar
Gu X D, He Y, Ni B B, Fu S, Hua M, Xiang Z 2020 Chin. J. Geophys. 63 2121
Google Scholar
[17] Ni B, Yan L, Fu S, Gu X, Cao X, Xiang Z, Zhang Y 2020 Geophys. Res. Lett. 47 e2019GL086487
[18] Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483
Google Scholar
[19] Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Phys. 124 5260
Google Scholar
[20] Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847
Google Scholar
[21] Chen Y P, Yang G B, Ni B B, Zhao Z Y, Gu X D, Zhou C, Wang F 2016 Adv. Space Res. 57 1871
Google Scholar
[22] Chen Y, Ni B, Gu X, Zhao Z, Yang G, Zhou C, Zhang Y 2017 Sci. Chin. Technol. Sci. 60 166
Google Scholar
[23] 易娟, 顾旭东, 李志鹏, 林仁桐, 蔡毅徽, 陈隆, 倪彬彬, 乐新安 2019 地球物理学报 62 3223
Google Scholar
Yi J, Gu X D, Li Z P, Lin R T, Cai Y H, Chen L, Ni B B, Yue X A 2019 Chin. J. Geophys. 62 3223
Google Scholar
[24] Yi J, Gu X, Cheng W, Tang X, Chen L, Ni B, Zhou R, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 238
Google Scholar
[25] Zhou R, Gu X, Yang K, Li G, Ni B, Yi J, Chen L, Zhao F, Zhao Z, Wang Q, Zhou L 2020 Earth Planet. Phys. 4 120
Google Scholar
[26] Vampola A L, Kuck G A 1978 J. Geophys. Res. 83 2543
Google Scholar
[27] Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. 86 640
Google Scholar
[28] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397
Google Scholar
[29] Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J J 2008 J. Geophys. Res. A 113 10211
Google Scholar
[30] Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. A 114 07205
Google Scholar
[31] Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Phys. 118 628
Google Scholar
[32] Agapitov O V, Artemyev A V, Mourenas D, Kasahara Y, Krasnoselskikh V 2014 J. Geophys. Res. Space Phys. 119 2876
Google Scholar
[33] Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056
Google Scholar
[34] Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361
Google Scholar
[35] Inan U S, Chang H C, Helliwell R A, Imhof W L, Reagan J B, Walt M 1985 J. Geophys. Res. 90 359
Google Scholar
[36] 王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 物理学报 60 039401
Google Scholar
Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401
Google Scholar
[37] Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101
Google Scholar
[38] Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J J, Thomson N R 2008 J. Geophys. Res. A 113 04211
Google Scholar
[39] Kulkarni P, Inan U S, Bell T F, Bortnik J 2008 J. Geophys. Res. A 113 07214
Google Scholar
[40] 张振霞, 王辰宇, 李强, 吴书贵 2014 物理学报 63 079401
Google Scholar
Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401
Google Scholar
[41] 罗旭东, 牛胜利, 左应红 2015 物理学报 64 069401
Google Scholar
Luo X D, Niu S L, Zuo Y H 2015 Acta Phys. Sin. 64 069401
Google Scholar
[42] Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Phys. 124 5246
Google Scholar
[43] Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res. A 117 06225
Google Scholar
[44] Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. A 116 10207
Google Scholar
[45] Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106
Google Scholar
[46] Ma Q, Artemyev A V, Mourenas D, Li W, Thorne R M, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Wygant J 2017 Geophys. Res. Lett. 44 12057
[47] Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. A 114 03201
Google Scholar
[48] Xiao F, Shen C, Wang Y, Zheng H, Wang S 2008 J. Geophys. Res. A 113 05203
Google Scholar
计量
- 文章访问数: 5414
- PDF下载量: 101