搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束尾波对质子束自调制尾波相速度影响的理论和数值模拟研究

华津宇 盛政明

引用本文:
Citation:

电子束尾波对质子束自调制尾波相速度影响的理论和数值模拟研究

华津宇, 盛政明

Theoretical and numerical studies of the phase velocity of wakefields in plasma driven by self-modulated proton beams with electron beam seeding

Hua Jin-Yu, Sheng Zheng-Ming
PDF
HTML
导出引用
  • 高能质子束在等离子体中通过自调制不稳定激发尾波的研究在过去的十年里有了长足的发展, 在欧洲核子研究中心(CERN)人们已经在相关AWAKE实验中利用这种尾波加速电子, 并获得了最高能量约2 GeV的电子束. 针对高能粒子加速应用需求, 近几年人们又进一步提出了利用电子束种子尾波控制质子束自调制过程的方案, 用于提升尾波的强度与稳定性. 本文研究了电子束种子尾波对质子束自调制尾波相速度的影响, 着重讨论了导致尾波相速度改变的多种物理机理及电子束所起到的作用. 通过理论分析和二维粒子模拟研究发现, 电子束的引入可以提升质子束自调制尾波的增长率和尾波的相速度, 且电子束的电荷密度越高其效果愈明显. 本文还探讨了电子束能量和质子束的纵向密度分布对相速度变化的影响.
    Significant progress has been made in the studies of wakefield excitation in plasma by a self-modulated high energy proton beam in the past decade. The electron beams accelerated up to 2 GeV by using such a wakefield were demonstrated in the AWAKE experiment at CERN in 2018. Aiming at the application of high energy particle accelerators, new ideas have been investigated in recent years, such as seeding the proton beam self-modulation with an electron beam in order to enhance the strength and stability of the wakefield or adding a density transition in the plasma distribution to enhance the phase velocity and the strength of the wakefield. Here in this work, we investigate the effects of electron beam seeding on the phase velocity of the wakefield generated by the modulated proton beam in plasma. The physical mechanisms responsible for the phase velocity change and the roles played by the electron beam seeding are discussed. The theoretical analysis and two-dimensional particle-in-cell simulations show that both the growth rate and the phase velocity of the wakefield generated by the modulated proton beam can be enhanced by the electron beam seeding. The higher the charge density of the electron beam, the more significant the enhancement effects. The effects of electron beam energy and proton beam longitudinal profiles on the increase of phase velocity are also studied. It is shown that the evolution of the electron beam distribution has a significant effect on the seeding self-modulation process, and thus affecting the phase velocity. A self-focusing electron seeding beam can increase the phase velocity of the wakefield even to superluminal while an expanding seeding beam can reduce the phase velocity and destroy the stability of the whole process. This work may benefit the proton beam seeding self-modulation acceleration and its applications.
      通信作者: 盛政明, zmsheng@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11991074)资助的课题
      Corresponding author: Sheng Zheng-Ming, zmsheng@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11991074)
    [1]

    Joshi C, Katsouleas T 2003 Phys. Today 56 47

    [2]

    Esarey E, Sprangle P, Krall J, Ting A 1996 IEEE Trans. Plasma Sci. 24 252Google Scholar

    [3]

    Kudryavtsev A M, Lotov K V, Skrinsky A N 1998 Nucl. Instrum Methods A 410 388Google Scholar

    [4]

    Rosenzweig J, Barov N, Murokh A, Colby E, Colestock P 1998 Nucl. Instrum Methods A 410 532Google Scholar

    [5]

    Shiltsev V D 2012 Phys. Usp. 55 965Google Scholar

    [6]

    Pukhov A, Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355

    [7]

    Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X, Xu Z Z 2015 Chin. Phys. B 24 015205Google Scholar

    [8]

    Shen Z C, Min C, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F, Sheng Z M 2017 Chin. Phys. B 26 115204Google Scholar

    [9]

    祝昕哲, 刘维媛, 陈民 2020 物理学报 69 035201Google Scholar

    Zhu X Z, Liu W Y, Chen M 2020 Acta Phys. Sin. 69 035201Google Scholar

    [10]

    Caldwell A, Lotov K, Pukhov A, Simon F 2009 Nat. Phys. 5 363Google Scholar

    [11]

    Xia G, Caldwell A, Lotov K, Pukhov A, Kumar N, An W, Lu W, Mori B, Joshi C, Huang C, Muggli P, Assmann R 2010 AIP Conf. Proc. 1299 510

    [12]

    Kumar N, Pukhov A, Lotov K 2010 Phys. Rev. Lett. 104 255003Google Scholar

    [13]

    Batsch F 2020 J. Phys. Conf. Ser. 1596 012006Google Scholar

    [14]

    Caldwell A, Adli E, Amorim L, et al. 2016 Nucl. Instrum Methods A 829 3Google Scholar

    [15]

    Adli E, Ahuja A, Apsimon O, et al. 2018 Nature 561 363Google Scholar

    [16]

    Turner M, Adli E, Ahuja A, et al. 2019 Phys. Rev. Lett. 122 054801Google Scholar

    [17]

    Martorelli R, Pukhov A 2016 Phys. Plasmas 23 053109Google Scholar

    [18]

    Siemon C, Khudik V, Austin Yi S, et al. 2013 Phys. Plasmas 20 103111Google Scholar

    [19]

    Schroeder C B, Benedetti C, Esarey E, et al. 2011 Phys. Rev. Lett. 107 145002Google Scholar

    [20]

    Pukhov A, Kumar N, Tückmantel T, et al. 2011 Phys. Rev. Lett. 107 145003Google Scholar

    [21]

    Schroeder C B, Benedetti C, Esarey E, et al. 2012 Phys. Rev. E 86 026402Google Scholar

    [22]

    Muggli P, Morales Guzman P I, Bachmann A M, Hüther M, Moreira M, Turner M, Vieira J 2020 J. Phys. Conf. Ser. 1596 012066Google Scholar

    [23]

    Lotov K V, Minakov V A 2020 Plasma Phys. Controlled Fusion 62 115025Google Scholar

    [24]

    Lotov K V 2003 Phys. Rev. Spec. Top. Accel. Beams 6 061301Google Scholar

    [25]

    Li Y 2020 Studies of Proton Driven Plasma Wakefield Acceleration (Springer Nature Press) pp43−47.

    [26]

    Lotov K V 2013 Phys. Plasmas 20 083119Google Scholar

  • 图 1  $ \xi =100 c/{\omega }_{\mathrm{p}} $处尾波相速度随时间变化 (a) 电子束密度较低时; (b) 电子束密度较大时

    Fig. 1.  Change of the phase velocity with time at $ \xi =100 c/{\omega }_{\mathrm{p}} $: (a) Low electron beam density; (b) high electron density.

    图 2  电子束种子自调制模拟结果 (a) 无电子束时的最大电场分布; (b) 无电子束时的相速度分布; (c) 电子束中心密度为$ 1{n}_{\mathrm{b}} $时的最大电场分布; (b) 电子束中心密度为$ 1{n}_{\mathrm{b}} $时的相速度分布; (e) 电子束中心密度为$ 10{n}_{\mathrm{b}} $时的最大电场分布; (f) 电子束中心密度为$ 10{n}_{\mathrm{b}} $时的相速度分布

    Fig. 2.  Results of the simulation: (a) Distribution of Emax when no seeding; (b) distribution of phase velocity when no seeding; (c) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (d) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (e) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $; (f) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

    图 3  (a) 不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $情况下尾波峰值相位的变化; (b) $ \xi =100\; c/{\omega }_{\mathrm{p}} $处不同$ {n}_{\mathrm{b}\mathrm{e}} $条件下模拟得到的尾波相速度随时间变化; (c) $ \xi =300\; c/{\omega }_{\mathrm{p}} $处不同$ {n}_{\mathrm{b}\mathrm{e}} $条件下模拟得到的尾波相速度随时间变化

    Fig. 3.  (a) Phase change of the wakefield peak with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $; (b) evolution of the phase velocity at $ \xi =100 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $; (c) evolution of the phase velocity at $ \xi =300 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $.

    图 4  不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $情况下最大电场随时间的分布

    Fig. 4.  Evolution of the maximum electric field with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $.

    图 5  (a) 电子束能量$ {E}_{\mathrm{b}\mathrm{e}}=100\mathrm{M}\mathrm{e}\mathrm{V} $时不同电子束密度$ {n}_{\mathrm{b}\mathrm{e}} $的平衡态分布; (b) $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $时不同电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $的平衡态分布

    Fig. 5.  (a) Equilibrium configuration with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ when Ebe =100 MeV; (b) equilibrium configuration with different E when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

    图 6  电子束压缩引起的质子束平衡态变化, 即在三个时刻的质子束平衡态分布

    Fig. 6.  Equilibrium configuration of proton beam with a compressing electron beam.

    图 7  利用电子束种子尾波调制质子束的模拟结果 (a), (b), (c)分别对应电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeV时的最大电场随时间变化; (d), (e), (f) 分别对应电子束能量$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeV时的相速度随时间变化

    Fig. 7.  Simulation of proton beam modulation with electron beam seeding:(a), (b), (c) The maximum electric fields as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively; (d), (e), (f) the phase velocity as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively.

    图 8  (a) 在$ \xi =100 c/{\omega }_{\mathrm{p}} $处不同电子束能量模拟得到的尾波相速度随时间变化; (b) 在$ \xi =300 c/{\omega }_{\mathrm{p}} $处不同电子束能量模拟得到的尾波相速度随时间变化

    Fig. 8.  (a) Phase velocity as a function of time at $ \xi =100 c/{\omega }_{\mathrm{p}} $ for different electron energy; (b) phase velocity as a function of time at $ \xi =300 c/{\omega }_{\mathrm{p}} $ for different electron energy.

    图 9  (a) 在$ \xi =500 c/{\omega }_{\mathrm{p}} $处模拟得到的尾波相速度随时间变化; (b) 在$ \xi =750 c/{\omega }_{\mathrm{p}} $处模拟得到的尾波相速度随时间变化

    Fig. 9.  (a) Phase velocity as a function of time at $ \xi =500 c/{\omega }_{\mathrm{p}} $; (b) phase velocity at $ \xi =750 c/{\omega }_{\mathrm{p}} $.

  • [1]

    Joshi C, Katsouleas T 2003 Phys. Today 56 47

    [2]

    Esarey E, Sprangle P, Krall J, Ting A 1996 IEEE Trans. Plasma Sci. 24 252Google Scholar

    [3]

    Kudryavtsev A M, Lotov K V, Skrinsky A N 1998 Nucl. Instrum Methods A 410 388Google Scholar

    [4]

    Rosenzweig J, Barov N, Murokh A, Colby E, Colestock P 1998 Nucl. Instrum Methods A 410 532Google Scholar

    [5]

    Shiltsev V D 2012 Phys. Usp. 55 965Google Scholar

    [6]

    Pukhov A, Meyer-ter-Vehn J 2002 Appl. Phys. B 74 355

    [7]

    Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X, Xu Z Z 2015 Chin. Phys. B 24 015205Google Scholar

    [8]

    Shen Z C, Min C, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F, Sheng Z M 2017 Chin. Phys. B 26 115204Google Scholar

    [9]

    祝昕哲, 刘维媛, 陈民 2020 物理学报 69 035201Google Scholar

    Zhu X Z, Liu W Y, Chen M 2020 Acta Phys. Sin. 69 035201Google Scholar

    [10]

    Caldwell A, Lotov K, Pukhov A, Simon F 2009 Nat. Phys. 5 363Google Scholar

    [11]

    Xia G, Caldwell A, Lotov K, Pukhov A, Kumar N, An W, Lu W, Mori B, Joshi C, Huang C, Muggli P, Assmann R 2010 AIP Conf. Proc. 1299 510

    [12]

    Kumar N, Pukhov A, Lotov K 2010 Phys. Rev. Lett. 104 255003Google Scholar

    [13]

    Batsch F 2020 J. Phys. Conf. Ser. 1596 012006Google Scholar

    [14]

    Caldwell A, Adli E, Amorim L, et al. 2016 Nucl. Instrum Methods A 829 3Google Scholar

    [15]

    Adli E, Ahuja A, Apsimon O, et al. 2018 Nature 561 363Google Scholar

    [16]

    Turner M, Adli E, Ahuja A, et al. 2019 Phys. Rev. Lett. 122 054801Google Scholar

    [17]

    Martorelli R, Pukhov A 2016 Phys. Plasmas 23 053109Google Scholar

    [18]

    Siemon C, Khudik V, Austin Yi S, et al. 2013 Phys. Plasmas 20 103111Google Scholar

    [19]

    Schroeder C B, Benedetti C, Esarey E, et al. 2011 Phys. Rev. Lett. 107 145002Google Scholar

    [20]

    Pukhov A, Kumar N, Tückmantel T, et al. 2011 Phys. Rev. Lett. 107 145003Google Scholar

    [21]

    Schroeder C B, Benedetti C, Esarey E, et al. 2012 Phys. Rev. E 86 026402Google Scholar

    [22]

    Muggli P, Morales Guzman P I, Bachmann A M, Hüther M, Moreira M, Turner M, Vieira J 2020 J. Phys. Conf. Ser. 1596 012066Google Scholar

    [23]

    Lotov K V, Minakov V A 2020 Plasma Phys. Controlled Fusion 62 115025Google Scholar

    [24]

    Lotov K V 2003 Phys. Rev. Spec. Top. Accel. Beams 6 061301Google Scholar

    [25]

    Li Y 2020 Studies of Proton Driven Plasma Wakefield Acceleration (Springer Nature Press) pp43−47.

    [26]

    Lotov K V 2013 Phys. Plasmas 20 083119Google Scholar

  • [1] 赵月琪, 崔佩霖, 李建龙, 李博原, 祝昕哲, 陈民, 刘振宇. 用于激光尾波加速的弯曲毛细管内气流运动的模拟研究. 物理学报, 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器. 物理学报, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [4] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响. 物理学报, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [6] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展. 物理学报, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [7] 王振宇, 唐昌建. 离子通道摇摆电子束流激发的纵向慢波不稳定性. 物理学报, 2011, 60(5): 055204. doi: 10.7498/aps.60.055204
    [8] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [9] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [10] 王 剑, 谷渝秋, 蔡达峰, 焦春晔, 吴玉迟, 何颖玲, 滕 建, 杨向东, 王 磊, 赵宗清. 激光尾波场中光子加速研究. 物理学报, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [11] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [12] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [13] 徐 涵, 常文蔚, 银 燕, 卓红斌. 三角激光脉冲尾波加速粒子模拟. 物理学报, 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [14] 徐 涵, 常文蔚, 银 燕, 卓红斌, 马燕云. 激光尾波场横向波破的粒子模拟. 物理学报, 2003, 52(7): 1701-1706. doi: 10.7498/aps.52.1701
    [15] 李毅. 热等离子体中的尾波加速. 物理学报, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] 余玮, 徐至展, 马锦秀, 陈荣清. 等离子体拍频波加速器中三波相互作用的时间发展. 物理学报, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [17] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器. 物理学报, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [18] 马锦秀, 徐至展. 激光等离子体拍频波加速器中泵浦倒空的消除. 物理学报, 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [19] 马锦秀, 徐至展. 双束“自陷”激光驱动的电子等离子体波的拍频激发. 物理学报, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
    [20] 贺凯芬. 电子束丝化扰动的孤立波解. 物理学报, 1983, 32(7): 954-959. doi: 10.7498/aps.32.954
计量
  • 文章访问数:  4039
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-22
  • 上网日期:  2021-06-26
  • 刊出日期:  2021-07-05

/

返回文章
返回