-
高质量单畴REBa2Cu3O7–δ (REBCO)超导块材具有广泛的应用前景, 但制备过程中极易产生大量多畴样品, 致使成功率明显下降、成本显著提高, 并制约其进一步批量化和实用化的进程. 受顶部籽晶熔渗生长(TSIG)方法的启发, 本文提出了一种对生长失败的GdBCO超导块材重新单畴化织构生长的新方法, 即将生长失败的样品进行预处理后作为固相源坯块, 然后采用改进后的TSIG法进行二次单畴化织构生长, 并成功地制备出了一系列二次单畴化的GdBCO超导样品, 同时, 对样品的超导性能及微观结构进行了研究. 结果表明, 所制备的二次单畴化GdBCO超导样品的磁悬浮力均大于30 N, 样品的捕获磁通密度均在0.3 T以上, 捕获磁通效率高达60%以上, 该结果为进一步发展低成本、高效率制备REBCO超导体的新方法提供了科学依据和新思路.
-
关键词:
- 单畴GdBCO超导体 /
- 二次单畴化生长 /
- 顶部籽晶熔渗 /
- 超导性能
High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa2Cu3O7–δ (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.-
Keywords:
- singe domain GdBCO bulk superconductor /
- recycling the failed bulk using textured growth /
- top-seeded infiltration growth /
- superconducting properties
[1] Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar
[2] Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar
[3] Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar
[4] Tomita M, Murakami M 2003 Nature 421 517Google Scholar
[5] Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar
[6] Yang W M, Wang M 2013 Physica C 493 128Google Scholar
[7] Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar
[8] Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445
[9] Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar
[10] Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar
[11] Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar
[12] Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar
[13] Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar
[14] Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar
[15] Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar
[16] Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar
[17] Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar
[18] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[19] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar
[20] Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar
[21] Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar
[22] Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar
[23] Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar
[24] Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar
[25] Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar
[26] Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar
[27] Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[28] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar
[29] Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar
[30] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[31] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[32] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar
Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar
[33] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[34] Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar
[35] Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar
[36] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
-
-
[1] Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar
[2] Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar
[3] Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar
[4] Tomita M, Murakami M 2003 Nature 421 517Google Scholar
[5] Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar
[6] Yang W M, Wang M 2013 Physica C 493 128Google Scholar
[7] Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar
[8] Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445
[9] Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar
[10] Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar
[11] Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar
[12] Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar
[13] Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar
[14] Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar
[15] Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar
[16] Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar
[17] Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar
[18] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[19] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar
[20] Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar
[21] Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar
[22] Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar
[23] Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar
[24] Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar
[25] Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar
[26] Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar
[27] Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[28] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar
[29] Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar
[30] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[31] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[32] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar
Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar
[33] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[34] Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar
[35] Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar
[36] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
计量
- 文章访问数: 4343
- PDF下载量: 60
- 被引次数: 0