搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋涡声散射的空间尺度特性数值研究

王益民 马瑞轩 武从海 罗勇 张树海

引用本文:
Citation:

旋涡声散射的空间尺度特性数值研究

王益民, 马瑞轩, 武从海, 罗勇, 张树海

Numerical study on spatial scale characteristics of sound scattering by a static isentropic vortex

Wang Yi-Min, Ma Rui-Xuan, Wu Cong-Hai, Luo Yong, Zhang Shu-Hai
PDF
HTML
导出引用
  • 旋涡对声波的散射问题是声波在复杂流场中传播的基本问题, 在声源定位、声目标识别及探测、远场噪声预测等方面具有重要的学术研究价值和工程应用价值, 如飞行器的尾涡识别、探测及测距, 湍流剪切流中声目标预测, 声学风洞试验中声学测量和声源定位等. 声波穿过旋涡时会产生非线性散射现象, 其物理机理主要与声波波长和旋涡半径的长度尺度比相关. 本文采用高阶精度高分辨率线性紧致格式, 通过求解二维非定常Euler方程, 数值模拟了平面声波穿过静止等熵涡的物理问题. 通过引入声散射截面法, 分析了不同声波波长与旋涡半径的长度尺度比对声波脉动压强、声散射有效声压以及声散射能量的影响规律. 研究表明: 随着声波波长与旋涡半径的长度尺度比逐渐增加, 旋涡流场对声场的影响逐渐减弱, 声散射有效声压影响区域先逐渐增大随后逐渐减小, 声散射能量最大值呈现4种不同的变化阶段.
    The scattering of acoustic waves by a vortex is a fundamental problem of the acoustic waves propagation in complex flow field, which plays an important role in academic research and engineering application for sound source localization, acoustic target recognition and detection, the far field noise prediction, such as aircraft wake vortex identification, detection and ranging, acoustic target forecasting in turbulent shear flow, acoustic measurement and sound source localization in wind tunnel test, etc. The nonlinear scattering phenomenon occurs when acoustic wave passes through the vortex, which is mainly related to the length-scale ratio between the wavelength of acoustic wave and the core radius of the vortex. In this paper, a plane acoustic wave passing through a stationary isentropic vortex is numerically simulated by solving a two-dimensional compressible, unsteady Euler equation. A sixth-order linear compact finite difference scheme is employed for spatial discretization. Time integration is performed by a four-stage fourth-order Runge-Kutta method. The eighth-order spatial compact filter scheme is adopted to suppress high frequency errors. At the far field boundaries, buffer layer is applied to handle the outgoing acoustic wave. Under the matching condition, the accuracy of the numerical results is verified by comparing with the previous direct numerical simulation results. The acoustic scattering cross-section method is introduced to analyze the effects of different length-scale ratio on the acoustic pulsation pressure, acoustic scattering effective sound pressure and acoustic scattering energy. Scattering occurs when sound waves pass through the vortex, the acoustic field in front of the vortex is basically unaffected, and the acoustic wave front remains intact. A “vacuum” region is formed slightly below the acoustic field directly behind the vortex, and two primary interference bands and several secondary interference bands are formed on the upper and lower sides of the vortex. As the length-scale ratio increases, the sound scattering decreases and the influence of the vortex flow field on the acoustic field gradually weakens. The influence region of effective sound pressure of acoustic scattering is mainly concentrated behind the vortex. With the increase of the length scale ratio, the influence gradually increases and extends to the upstream, and then the influence region gradually decreases to the vicinity of the vortex. When the length scale ratio is greater than or equal to 6, the location of the maximum effective sound pressure of sound scattering jumps from the upper right to the lower right of the vortex. The influence of acoustic wave wavelength change on the acoustic scattering energy can be divided into three parts. With the increase of the length scale ratio, the maximum sound scattering energy presents four different stages.
      通信作者: 张树海, shuhai_zhang@163.com
    • 基金项目: 国家自然科学基金重点项目(批准号: 11732016)、四川省科技计划(批准号: 2018JZ0076)和国家数值风洞工程资助的课题
      Corresponding author: Zhang Shu-Hai, shuhai_zhang@163.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11732016), the Science and Technology Program of Sichuan Province, China (Grant No. 2018JZ0076), and the National Numerical Windtunnel project
    [1]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [2]

    Ribner H S 1957 J. Acoust. Soc. Am. 29 435Google Scholar

    [3]

    Miles J W 1957 J. Acoust. Soc. Am. 29 226Google Scholar

    [4]

    Amiet R K 1975 AIAA Paper 75Google Scholar

    [5]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [6]

    Schlinker R H, Amiet R K 1980 NASA-CR-3371

    [7]

    张雪, 陈宝, 卢清华 2014 应用声学 33 433Google Scholar

    Zhang X, Chen B, Lu Q H 2014 J. Appl. Acoust. 33 433Google Scholar

    [8]

    Bogey C, Bailly C, Juvé D 2002 AIAA J. 40 235Google Scholar

    [9]

    张军, 王勋年, 张俊龙, 卢翔宇, 陈正武 2018 实验流体力学 32 39Google Scholar

    Zhang J, Wang X N, Zhang J L, Lu X Y, Chen Z W 2018 J. Exp. Fluid Mech. 32 39Google Scholar

    [10]

    张军, 陈鹏, 张俊龙, 卢翔宇 2018 航空动力学报 33 2458Google Scholar

    Zhang J, Chen P, Zhang J L, Lu X Y 2018 J. Aerosp. Power 33 2458Google Scholar

    [11]

    倪章松, 张军, 王茂, 张俊龙 2020 航空动力学报 35 244Google Scholar

    Ni Z S, Zhang J, Wang M, Zhang J L 2020 J. Aerosp. Power 35 244Google Scholar

    [12]

    王李璨, 陈荣钱, 尤延铖, 陈正武, 邱若凡 2019 西北工业大学学报 37 1148Google Scholar

    Wang L C, Chen R Q, You Y C, Chen Z W, Qiu R F 2019 J. Northwest. Polytech. Univ. 37 1148Google Scholar

    [13]

    Wang L C, Chen R Q, You Y C, Wu W J, Qiu R F 2019 Acta Acust. Acust. 105 732Google Scholar

    [14]

    Wang L C, Chen R Q, You Y C, Qiu R F 2020 J. Sound Vib. 492 115801Google Scholar

    [15]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [16]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [17]

    Symons N P, Aldridge D F, Marlin D H, Wilson D K, Patton D G, Sullivan P P, Collier S L, Ostashev V E, Drob D P 2004 11th International Symposium on Long Range Sound Propagation

    [18]

    Belyaev I V, Kopiev V F 2007 AIAA Paper 2007Google Scholar

    [19]

    Belyaev I V, Kopiev V F 2007 proceedings of the 7 th European Conference on Noise Control

    [20]

    Karabasov S A, Kopiev V F, Goloviznin V M 2009 Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)

    [21]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [22]

    Cheinet S, Ehrhardt L, Juve D, Blanc-Benon P 2012 J. Acoust. Soc. Am. 132 2198Google Scholar

    [23]

    Ke G Y, Li W, Zheng Z C 2015 AIAA Paper 2015Google Scholar

    [24]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [25]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [26]

    Liu X L, Zhang S H, Zhang H X, Shu C W 2013 J. Comput. Phys. 248 235Google Scholar

    [27]

    刘旭亮 2011 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Liu X L 2011 M. S. Thesis (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [28]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [29]

    王益民 2017 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wang Y M 2017 Master Dissertation (Mianyang: China Aerodynamics Research and Development Cen-ter) (in Chinese)

    [30]

    Inoue O, Hattori Y 1999 J. Fluid Mech. 380 81Google Scholar

    [31]

    Zhang S H, Zhang Y T, Chi C W 2005 Phys. Fluids 17 116101Google Scholar

    [32]

    Robert H K 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [33]

    Hattori Y, Llewellyn S S G 2002 J. Fluid Mech. 473 275Google Scholar

    [34]

    Shi J, Yang D S, Zhang H Y, Shi S G, Li S, Hu B 2017 Chin. Phys. B 26 074301Google Scholar

    [35]

    Wu J Z 1991 Adv. Mech. 21 430Google Scholar

    [36]

    Wu J Z 1992 Adv. Mech. 22 35Google Scholar

  • 图 1  平面声波穿过旋涡的示意图

    Fig. 1.  Schematic diagram of acoustic wave propagating through a vortex

    图 2  静止等熵涡初始分布 (a) 密度; (b) 速度; (c) 压强; (d) 涡量

    Fig. 2.  Initial distribution of stationary isentropic vortices: (a) density; (b) velocity; (c)pressure; (d) vorticity.

    图 3  散射有效声压在半径为$r = 8{R_{\rm c}}$ 圆周上的分布及其与文献[16, 24]的对比

    Fig. 3.  The distribution of root-mean-square pressure of scattered wave on a circle with radius $8 R_{\rm c}$ (comparison between numerical results and that of reference[16, 24])

    图 4  声波脉动压强随长度尺度比$r_{\rm L}$的变化云图 (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $

    Fig. 4.  The contour of the change of acoustic wave pressure with the length-scale ratio $ r_{\rm L} $: (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c)$ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $.

    图 5  散射有效声压$ p_{\rm rms} $随长度尺度比$ r_{\rm L} $的变化云图 (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $r_{\rm L} = $$ 10.0$; (f) $ r_{\rm L} = 20.0 $

    Fig. 5.  The contour of the change of the root-mean-square of scattering pressure with the length-scale ratio $ r_{\rm L} $: (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $.

    图 6  散射有效声压在半径为$ r = 8 R_{\rm c} $圆周上的分布  (a) 全局图; (b) 局部放大图1; (c) 局部放大图2

    Fig. 6.  The distribution of root-mean-square pressure of scattered wave on a circle with radius $ 8 R_{\rm c} $: (a) Global; (b) zoomed 1; (c) zoomed 2.

    图 7  散射有效声压最大值随长度尺度比的变化曲线  (a) 散射有效声压最大值; (b) 散射有效声压最大值点的半径; (c) 散射有效声压最大值点的角度

    Fig. 7.  The curve of the root-mean-square pressure of scattered wave with $r_{\rm L}$ value: (a) $ {p_{{\rm rms}\;{\rm max}}} $; (b) $ R\left({p_{{\rm rms}\;{\rm max}}} \right) $; (c) $ \theta \left( {p_{{\rm rms}\;{\rm max}}} \right) $.

    图 8  声散射能量$ \varSigma $随观测半径$ R $的变化曲线 (a) $r_{\rm L} \in $$ \left ( 0.1, \, 1.0 \right)$; (b) $ r_{\rm L} \in \left ( 2.0, \, 5.0 \right) $; (c) $ r_{\rm L} \in \left ( 6.0, \, 30.0 \right) $

    Fig. 8.  The curve of acoustical scattering cross-section with observed radius: (a) $ r_{\rm L} \in \left ( 0.1, \, 1.0 \right) $; (b) $ r_{\rm L} \in \left ( 2.0, \, 5.0 \right) $; (c) $ r_{\rm L} \in \left ( 6.0, \, 30.0 \right) $.

    图 9  声散射能量随尺度比的变化曲线 (a) $\varSigma_{\max }$; (b) $R\left(\varSigma_{\max }\right )$

    Fig. 9.  The curve of acoustical scattering cross-section with $ r_{\rm L} $ value: (a) $\varSigma_{\max }$; (b) $R\left( \varSigma_{\max }\right )$.

    图 10  声波幅值随时间的变化曲线

    Fig. 10.  The variation of acoustic wave amplitude with time

    图 11  声散射压强云图 (a) $ \lambda = 1 $; (b) $ \lambda = 2 $; (c) $ \lambda = 4 $

    Fig. 11.  The contour of sound scattering pressure: (a) $ \lambda = 1 $; (b) $ \lambda = 2 $; (c) $ \lambda = 4 $.

  • [1]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [2]

    Ribner H S 1957 J. Acoust. Soc. Am. 29 435Google Scholar

    [3]

    Miles J W 1957 J. Acoust. Soc. Am. 29 226Google Scholar

    [4]

    Amiet R K 1975 AIAA Paper 75Google Scholar

    [5]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [6]

    Schlinker R H, Amiet R K 1980 NASA-CR-3371

    [7]

    张雪, 陈宝, 卢清华 2014 应用声学 33 433Google Scholar

    Zhang X, Chen B, Lu Q H 2014 J. Appl. Acoust. 33 433Google Scholar

    [8]

    Bogey C, Bailly C, Juvé D 2002 AIAA J. 40 235Google Scholar

    [9]

    张军, 王勋年, 张俊龙, 卢翔宇, 陈正武 2018 实验流体力学 32 39Google Scholar

    Zhang J, Wang X N, Zhang J L, Lu X Y, Chen Z W 2018 J. Exp. Fluid Mech. 32 39Google Scholar

    [10]

    张军, 陈鹏, 张俊龙, 卢翔宇 2018 航空动力学报 33 2458Google Scholar

    Zhang J, Chen P, Zhang J L, Lu X Y 2018 J. Aerosp. Power 33 2458Google Scholar

    [11]

    倪章松, 张军, 王茂, 张俊龙 2020 航空动力学报 35 244Google Scholar

    Ni Z S, Zhang J, Wang M, Zhang J L 2020 J. Aerosp. Power 35 244Google Scholar

    [12]

    王李璨, 陈荣钱, 尤延铖, 陈正武, 邱若凡 2019 西北工业大学学报 37 1148Google Scholar

    Wang L C, Chen R Q, You Y C, Chen Z W, Qiu R F 2019 J. Northwest. Polytech. Univ. 37 1148Google Scholar

    [13]

    Wang L C, Chen R Q, You Y C, Wu W J, Qiu R F 2019 Acta Acust. Acust. 105 732Google Scholar

    [14]

    Wang L C, Chen R Q, You Y C, Qiu R F 2020 J. Sound Vib. 492 115801Google Scholar

    [15]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [16]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [17]

    Symons N P, Aldridge D F, Marlin D H, Wilson D K, Patton D G, Sullivan P P, Collier S L, Ostashev V E, Drob D P 2004 11th International Symposium on Long Range Sound Propagation

    [18]

    Belyaev I V, Kopiev V F 2007 AIAA Paper 2007Google Scholar

    [19]

    Belyaev I V, Kopiev V F 2007 proceedings of the 7 th European Conference on Noise Control

    [20]

    Karabasov S A, Kopiev V F, Goloviznin V M 2009 Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)

    [21]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [22]

    Cheinet S, Ehrhardt L, Juve D, Blanc-Benon P 2012 J. Acoust. Soc. Am. 132 2198Google Scholar

    [23]

    Ke G Y, Li W, Zheng Z C 2015 AIAA Paper 2015Google Scholar

    [24]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [25]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [26]

    Liu X L, Zhang S H, Zhang H X, Shu C W 2013 J. Comput. Phys. 248 235Google Scholar

    [27]

    刘旭亮 2011 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Liu X L 2011 M. S. Thesis (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [28]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [29]

    王益民 2017 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wang Y M 2017 Master Dissertation (Mianyang: China Aerodynamics Research and Development Cen-ter) (in Chinese)

    [30]

    Inoue O, Hattori Y 1999 J. Fluid Mech. 380 81Google Scholar

    [31]

    Zhang S H, Zhang Y T, Chi C W 2005 Phys. Fluids 17 116101Google Scholar

    [32]

    Robert H K 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [33]

    Hattori Y, Llewellyn S S G 2002 J. Fluid Mech. 473 275Google Scholar

    [34]

    Shi J, Yang D S, Zhang H Y, Shi S G, Li S, Hu B 2017 Chin. Phys. B 26 074301Google Scholar

    [35]

    Wu J Z 1991 Adv. Mech. 21 430Google Scholar

    [36]

    Wu J Z 1992 Adv. Mech. 22 35Google Scholar

  • [1] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [2] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究. 物理学报, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [3] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [4] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [5] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [6] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [7] 夏峙, 李秀坤. 水下目标弹性声散射信号分离. 物理学报, 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [8] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [12] 余春日, 宋晓书, 程新路, 杨向东, 申传胜. Ne-HF体系的相互作用势及散射截面的密耦计算. 物理学报, 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [13] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算. 物理学报, 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [14] 余春日, 汪荣凯, 程新路, 杨向东. He-HF体系势能模型对散射截面影响的理论研究. 物理学报, 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
    [15] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [16] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [17] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [18] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
    [19] 沈皓, 承焕生, 汤家镛, 杨福家. 碳对α的非卢瑟福背散射截面研究. 物理学报, 1994, 43(10): 1569-1575. doi: 10.7498/aps.43.1569
    [20] 钱祖文. 关于声散射声. 物理学报, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  4367
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-05-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回