搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波诱导水中纳米气泡塌陷的分子动力学分析

王小峰 陶钢 徐宁 王鹏 李召 闻鹏

引用本文:
Citation:

冲击波诱导水中纳米气泡塌陷的分子动力学分析

王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏

Molecular dynamics analysis of shock wave-induced nanobubble collapse in water

Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng
PDF
HTML
导出引用
  • 人体中含有的纳米气泡受冲击波诱导塌陷后产生的强冲击高速纳米射流会对人体组织产生创伤. 本文运用分子动力学方法, 分析了冲击波引起的水中纳米气泡的塌陷行为, 纳米气泡分为三种: 真空、含二氧化碳和氧气纳米气泡. 同时探讨了不同气体分子数、纳米气泡的直径和冲击波的冲量等因素对水中纳米气泡塌陷行为的影响. 研究发现在真空纳米气泡中加入气体分子后并没有影响冲击波的传播, 但在纳米气泡完全塌陷前, 与真空和含1368个二氧化碳分子(或含1409个氧气分子)的纳米气泡相比, 含718个二氧化碳分子(或含733个氧气分子)的纳米气泡塌陷形成的纳米射流的最大速度较大. 在气泡完全塌陷后气体分子致使纳米射流的速度衰减, 最终含气体分子的纳米射流的最大速度小于真空的. 此外, 还发现在大冲量时, 纳米气泡的塌陷时间短, 同一时刻冲击波经过时的密度、压力更大, 气泡塌陷后纳米射流的最大速度较大, 冲击力比小冲量增强很多. 较大直径的纳米气泡塌陷时间长, 同一时刻冲击波经过时的密度、压力较小, 冲击波传播较慢, 但纳米射流的最大速度较大, 纳米射流冲击力更强. 纳米射流的最大速度越大, 含气纳米气泡的气体分子在冲击方向分散的距离更远, 凹陷深度更深.
    The nanobubbles contained in the human body are induced to collapse by the shock wave, and thus produce a strong impact and high-speed nanojet, resulting in trauma to human tissues. The collapse of nanobubbles in water caused by shock waves is investigated by molecular dynamics. Nanobubbles are divided into three types: vacuum nanobubble, carbon dioxide nanobubble, and oxygen nanobubble. The influence of factors such as the number of gas molecules, the diameter of the nanobubbles, and the impulse of the shock wave on the bubble collapse are considered separately. The results show that the addition of gas molecules to vacuum nanobubbles does not affect the propagation of shock waves. However, before the nanobubbles are completely collapsed, the maximum velocity of the nanojet formed by the collapse of nanobubbles containing 718 carbon dioxide molecules (or 733 oxygen molecules) is larger than that of vacuum and nanobubbles containing 1368 carbon dioxide molecules (or 1409 oxygen molecules). After the nanobubbles are completely collapsed, the gas molecules cause the velocity of the nanojet to decay, and finally the maximum velocity of the nanojet containing gas molecules is less than that of the vacuum nanojet. In addition, it is also found that the collapse time of nanobubbles is short at high impulse, and the density and pressure when the shock wave passes at the same time are both greater. After the bubble collapses, the maximum velocity of the nanojet is larger, and the impact force is much stronger than that at a small impulse. Larger diameter nanobubble has a longer collapse time, and the density and pressure when the shock wave passes at the same time are both smaller, and the shock wave propagation is slower, but the maximum speed of the nanojet is larger. The impact is stronger. The greater the maximum velocity of the nanojet, the greater the distance that is dispersed by the gas molecules of the gas-containing nanobubbles in the impact direction will be and the deeper the depression.
      通信作者: 陶钢, taogang@njust.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 30919011239)资助的课题
      Corresponding author: Tao Gang, taogang@njust.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 30919011239)
    [1]

    Mayorga M A 1997 Toxicology 121 17Google Scholar

    [2]

    Scott T E, Kirkman E, Haque M, Gibb I E, Mahoney P, Hardman J G 2017 Br. J. Anaesth. 118 311Google Scholar

    [3]

    Hoge C W, Mcgurk D, Thomas J L, Cox A L, Engel C C, Castro C A 2008 N. Engl. J. Med. 358 453Google Scholar

    [4]

    Rosenfeld J V, McFarlane A C, Bragge P, Armonda R A, Grimes J B, Ling G S 2013 Lancet Neurol. 12 882Google Scholar

    [5]

    李新岭, 沈岳, 赖西南, 马彦波, 刘海, 王丽丽, 陈强 2016 解放军医学杂志 41 689Google Scholar

    Li X L, Shen Y, Lai X L, Ma Y B, Liu H, Wang L L, Chen Q 2016 Med. J. Chin. People’s Liberation Army 41 689Google Scholar

    [6]

    陈吉钢, 张丹枫, 王春晖, 李振兴, 董艳, 侯立军 2019 第二军医大学学报 40 763Google Scholar

    Chen J G, Zhang D F, Wang C H, Li Zh X, Dong Y, Hou L J 2019 Acad. J. Second Military Med. Univ. 40 763Google Scholar

    [7]

    栗志杰, 由小川, 柳占立, 杜智博, 张仡, 杨策, 庄茁 2020 爆炸与冲击 40 100Google Scholar

    Li Z J, You X C, Liu Z L, Du Z B, ZhangY, Yang C, Zhuang Z 2020 Explosion and shock 40 100Google Scholar

    [8]

    Axelsson H, Yelverton J T 1996 J. Trauma Acute Care Surg. 40 S31Google Scholar

    [9]

    Stuhmiller J H, Ho H H, Vorst M J V, Dodd K T, Fitzpatrick T, Mayorga M 1996 J. Biomech. 29 227Google Scholar

    [10]

    周杰, 陶钢, 王健 2012 爆炸与冲击 32 418Google Scholar

    Zhou J, Tao G, Wang J 2012 Explosion and shock 32 418Google Scholar

    [11]

    徐成, 巨圆圆, 胡明, 龙仁荣, 阮狄克 2019 转化医学杂志 8 179Google Scholar

    Xu C, Ju Y Y, Hu M, Long R R, Ruan D K 2019 Translational Medicine Journal 8 179Google Scholar

    [12]

    Adhikari U, Goliaei A, Berkowitz M L 2016 Phys. Chem. Chem. Phys. 18 32638Google Scholar

    [13]

    Larina I V, Evers B M, Esenaliev R O 2005 Anticancer Res. 25 149

    [14]

    Parker J L, Claesson P M, Attard P 1994 J. Phys. Chem. 98 8468Google Scholar

    [15]

    Ishida N, Inoue T, Miyahara M, Higashitani K 2000 Langmuir 16 6377Google Scholar

    [16]

    Lou S T, Ouyang Z Q, Zhang Y, Li X J, Yang F J 2000 J. Vac. Sci. Technol., B 18 2573Google Scholar

    [17]

    Ohgaki K, Khanh N Q, Joden Y, Tsuji A, Nakagawa T 2010 Chem. Eng. Sci. 65 1296Google Scholar

    [18]

    Peng H, Birkett G R, Nguyen A V 2015 Adv. Colloid Interface Sci. 222 573Google Scholar

    [19]

    Bunkin N F, Shkirin A V, Suyazov N V, Babenko V A, Sychev A A, Penkov N V, Belosludtsev K N, Gudkov S V 2016 J. Phys. Chem. B 120 1291Google Scholar

    [20]

    Pan G, He G, Zhang M, Zhou Q, Tyliszczak T, Tai R, Guo J, Bi L, Wang L, Zhang H 2016 Langmuir 32 11133Google Scholar

    [21]

    Ohl S W, Klaseboer E, Khoo B C 2015 Interface Focus 5 20150019Google Scholar

    [22]

    Ding Z, Gracewski S M 1996 J. Fluid Mech. 309 183Google Scholar

    [23]

    Hawker N, Ventikos Y 2012 J. Fluid Mech. 701 59Google Scholar

    [24]

    Vedadi M, Choubey A, Nomura K, Kalia R K, Nakano A, Vashishta P, Van Duin A C T 2010 Phys. Rev. Lett. 105 014503Google Scholar

    [25]

    Choubey A, Vedadi M, Nomura K, Kalia R K, Nakano A, Vashishta P 2011 Appl. Phys. Lett. 98 023701Google Scholar

    [26]

    Santo K P, Berkowitz M L 2014 J. Chem. Phys. 140 054906Google Scholar

    [27]

    Santo K P, Berkowitz M L 2015 J. Phys. Chem. B 119 8879Google Scholar

    [28]

    Adhikari U, Goliaei A, Berkowitz M L 2015 J. Phys. Chem. B 119 6225Google Scholar

    [29]

    Fu H, Comer J, Cai W, Chipot C 2015 J. Phys. Chem. Lett. 6 413Google Scholar

    [30]

    Lau E Y, Berkowitz M L, Schwegler E 2016 Biophys. J. 110 147Google Scholar

    [31]

    Goliaei A, Adhikari U, Berkowitz M L 2015 ACS Chem. Neurosci. 6 1296Google Scholar

    [32]

    Wu Y T, Adnan A 2017 Sci. Rep. 7 1Google Scholar

    [33]

    Vedadi M H, Haas S 2011 Appl. Phys. Lett. 99 154105Google Scholar

    [34]

    Sun D D, Lin X, Zhang Z, Gu N 2016 J. Phys. Chem. C 120 18803Google Scholar

    [35]

    Lu X M, Yuan B, Zhang X R, Yang K, Ma Y Q 2017 Appl. Phys. Lett. 110 023701Google Scholar

    [36]

    Nan N, Si D, Hu G 2018 J. Chem. Phys. 149 074902Google Scholar

    [37]

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J 2005 J. Comput. Chem. 26 1701Google Scholar

    [38]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435Google Scholar

    [39]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [40]

    Oostenbrink C, Villa A, Mark A E, Van Gunsteren W F 2004 J. Comput. Chem. 25 1656Google Scholar

    [41]

    Berendsen H J, Postma J P, van Gunsteren W F, Hermans J 1981 Intermolecular Forces (Dordrecht: Springer) pp331−342

    [42]

    Berweger C D, Gunsteren W F V, Müller-Plathe F 1995 Chem. Phys. Lett. 232 429Google Scholar

    [43]

    Cygan R T, Romanov V N, Myshakin E M 2012 J. Phys. Chem. C 116 13079Google Scholar

    [44]

    Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C, Oostenbrink C, Mark A E 2011 J. Chem. Theory Comput. 7 4026Google Scholar

    [45]

    Koziara K B, Stroet M, Malde A K, Mark A E 2014 J. Comput.-Aided Mol. Des. 28 221Google Scholar

    [46]

    Stroet M, Caron B, Visscher K M, Geerke D P, Malde A K, Mark A E 2018 J. Chem. Theory Comput. 14 5834Google Scholar

    [47]

    Lau E Y, Berkowitz M L, Schwegler E 2016 Biophysical Journal 110 147

    [48]

    Wang X F, Tao G, Wen P, Ren B X, Pang C Q, Du C X 2020 J. Phys. Chem. B 124 9535Google Scholar

    [49]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [50]

    Ollila O S, Risselada H J, Louhivuori M, Lindahl E, Vattulainen I, Marrink S J 2009 Phys. Rev. Lett. 102 078101Google Scholar

    [51]

    Vanegas J M, Torres-Sánchez A, Arroyo M 2014 J. Chem. Theory Comput. 10 691Google Scholar

    [52]

    Torres-Sánchez A, Vanegas J M, Arroyo M 2015 Phys. Rev. Lett. 114 258102Google Scholar

  • 图 1  包含水和纳米气泡的计算模型示意图

    Fig. 1.  Schematic diagram of calculation model including water and nanobubble.

    图 2  u1t5 (up = 1 km/s, τs = 5 ps)条件下不同时刻真空纳米气泡的塌陷过程. 纳米气泡的直径为14 nm

    Fig. 2.  The collapse process of vacuum nanobubble at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 3  u1t5 (up = 1 km/s, τs = 5 ps)条件下含二氧化碳纳米气泡(718个二氧化碳分子)完全塌陷前后的形态变化过程. 纳米气泡的直径为14 nm

    Fig. 3.  The morphological change process of carbon dioxide-containing nanobubbles (718 carbon dioxide molecules) before and after the complete collapse under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 4  u1t5 (up = 1 km/s, τs = 5 ps)条件下含二氧化碳纳米气泡(718个二氧化碳分子)完全塌陷后的内部凹陷. 纳米气泡的直径为14 nm

    Fig. 4.  Internal depression of carbon dioxide-containing nanobubble (718 carbon dioxide molecules) after the complete collapse under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 5  u1t5 (up = 1 km/s, τs = 5 ps)条件下不同时刻真空纳米气泡完全塌陷前后的一维密度分布. 纳米气泡的直径为14 nm

    Fig. 5.  The one-dimensional density distribution before and after the complete collapse of vacuum nanobubble at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 6  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻真空与含气纳米气泡(分别含718个和1368个二氧化碳分子)完全塌陷前后的一维密度分布. 纳米气泡的直径为14 nm

    Fig. 6.  The one-dimensional density distribution before and after the complete collapse of vacuum and gas-containing nanobubbles (containing 718 and 1368 carbon dioxide molecules, respectively) at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 7  不同冲量下(u1t5和u1t3)含氧气纳米气泡(1409个氧气分子)完全塌陷前后的一维密度分布. 纳米气泡的直径为14 nm

    Fig. 7.  The one-dimensional density distribution before and after the complete collapse of oxygen-containing nanobubbles(1409 carbon dioxide molecules) under different impulses (u1t5 and u1t3). The diameter of the nanobubble is 14 nm.

    图 8  u1t5(up = 1 km/s, τs = 5 ps)条件下不同直径的(14和10 nm)含二氧化碳纳米气泡完全塌陷前后的一维密度分布

    Fig. 8.  The one-dimensional density distribution before and after the complete collapse of carbon dioxide-containing nanobubbles with different diameters (14 and 10 nm) under the condition of u1t5 (up = 1 km/s, τs = 5 ps).

    图 9  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻含二氧化碳纳米气泡(718个二氧化碳分子)完全塌陷前后沿z轴的压力分布. 纳米气泡的直径为14 nm

    Fig. 9.  The pressure distribution along the z-axis before and after the complete collapse of carbon dioxide-containing nanobubble (718 carbon dioxide molecules) at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 10  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻真空和含二氧化碳纳米气泡完全塌陷前后沿z轴的压力分布. 纳米气泡的直径为14 nm

    Fig. 10.  The pressure distribution along the z-axis before and after the complete collapse of vacuum and carbon dioxide-containing nanobubbles at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 11  不同冲量下(u1t5和u1t3)含氧气纳米气泡(1409个氧气分子)完全塌陷前后沿z轴的压力分布. 纳米气泡的直径为14 nm

    Fig. 11.  The pressure distribution along the z-axis before and after the complete collapse of oxygen-containing nanobubbles (1409 carbon dioxide molecules) under different impulses (u1t5 and u1t3). The diameter of the nanobubble is 14 nm.

    图 12  u1t5 (up = 1 km/s, τs = 5 ps)条件下不同直径的(14和10 nm)含二氧化碳纳米气泡完全塌陷前后沿z轴的压力分布

    Fig. 12.  The pressure distribution along the z-axis before and after the complete collapse of dioxide-containing nanobubbles nanobubbles with different diameters (14 and 10 nm) under the condition of u1t5 (up = 1 km/s, τs = 5 ps).

    图 13  u1t5 (up = 1 km/s, τs = 5 ps)条件下含氧气纳米气泡(733个氧气分子)完全塌陷前后在yz平面内的粒子速度矢量分布. 箭头方向表示速度方向, 箭头长短与颜色表示速度大小. 纳米气泡的直径为14 nm

    Fig. 13.  The particle velocity vector distribution in the yz plane before and after the complete collapse of oxygen-containing nanobubble (733 oxygen molecules) at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The direction of arrow indicates the direction of the particle velocity, and the length and color of the arrow indicate the magnitude of the particle velocity. The diameter of the nanobubble is 14 nm.

    图 14  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻真空、含氧气纳米气泡塌陷形成的纳米射流的最大速度. 纳米气泡的直径为14 nm

    Fig. 14.  The maximum velocity of the nanojet formed by the collapse of vacuum and oxygen-containing nanobubbles at different moments under u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 15  7 ps时u1t5(up = 1 km/s, τs = 5 ps)条件下含氧气纳米气泡(733个氧气分子)塌陷后在yz平面内的粒子速度矢量分布 (a)水分子和氧气分子; (b) 只有水分子; (c)只有氧气分子

    Fig. 15.  The particle velocity vector distribution in the yz plane after the collapse of oxygen-containing nanobubble (733 oxygen molecules) at 7 ps under the condition of u1t5 (up = 1 km/s, τs = 5 ps): (a) Water molecules and oxygen molecules; (b) only water molecules; (c) only oxygen molecules.

    图 16  7 ps时u1t5(up = 1 km/s, τs = 5 ps)条件下含氧气纳米气泡(1409个氧气分子)塌陷后在yz平面内的粒子速度矢量分布 (a)水分子和氧气分子; (b) 只有水分子; (c)只有氧气分子

    Fig. 16.  The particle velocity vector distribution in the yz plane after the collapse of oxygen-containing nanobubble (1409 oxygen molecules) at 7 ps under the condition of u1t5 (up = 1 km/s, τs = 5 ps): (a) Water molecules and oxygen molecules; (b) only water molecules; (c) only oxygen molecules.

    图 17  14 ps时u1t5(up = 1 km/s, τs = 5 ps)条件下真空和含氧气纳米气泡(733个氧气分子)塌陷后在yz平面内的粒子速度矢量分布 (a)含氧气纳米气泡; (b)真空纳米气泡

    Fig. 17.  The particle velocity vector distribution in the yz plane after the collapse of vacuum and oxygen-containing nanobubbles (733 oxygen molecules) at 14 ps under the condition of u1t5 (up = 1 km/s, τs = 5 ps): (a) Oxygen-containing nanobubble; (b) vacuum nanobubble.

    图 18  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻真空和含二氧化碳纳米气泡塌陷形成的纳米射流的最大速度. 纳米气泡的直径为14 nm

    Fig. 18.  The maximum velocity of the nanojet formed by the collapse of vacuum and carbon dioxide-containing nanobubbles at different moments under u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 19  小冲量条件下(u1t3)不同时刻真空、含氧气和二氧化碳纳米气泡塌陷形成的纳米射流的最大速度. 纳米气泡的直径为14 nm

    Fig. 19.  Under small impulse conditions (u1t3), the maximum velocity of the nanojet formed by the collapse of vacuum, oxygen and carbon dioxide nanobubbles. The diameter of the nanobubble is 14 nm.

    图 20  不同冲量下(u1t5和u1t3)真空纳米气泡塌陷形成的纳米射流的最大速度. 纳米气泡的直径为14 nm

    Fig. 20.  The maximum velocity of the nanojet formed by the collapse of vacuum nanobubbles under different impulses (u1t5 and u1t3). The diameter of the nanobubble is 14 nm.

    图 21  u1t5(up = 1 km/s, τs = 5 ps)条件下不同直径的(14和10 nm)含气体纳米气泡塌陷形成的纳米射流的最大速度. 14 nm纳米气泡分别含718个二氧化碳分子和733个氧气分子, 10 nm纳米气泡分别含223个二氧化碳分子和232个氧气分子

    Fig. 21.  The maximum velocity of the nanojet formed by the collapse of gas-containing nanobubbles with different diameters (14 and 10 nm) under the condition of u1t5 (up = 1 km/s, τs = 5 ps). Nanobubbles with a diameter of 14 nm contain 718 carbon dioxide molecules and 733 oxygen molecules, respectively, and nanobubbles with a diameter of 10 nm contain 223 carbon dioxide molecules and 232 oxygen molecules, respectively.

    图 22  u1t5(up = 1 km/s, τs = 5 ps)条件下含不同气体分子数的纳米气泡塌陷后形态比较 (a) 718个二氧化碳分子; (b) 1368个二氧化碳分子; (c) 图(b)的截面图; (d) 733个氧气分子; (e) 1409个氧气分子; (f)图(e)的截面图. 图中水分子截取的范围为z = 30—40 nm之间. 纳米气泡的直径为14 nm

    Fig. 22.  Under u1t5 (up = 1 km/s, τs = 5 ps), the shape comparison of nanobubbles with different numbers of gas molecules after collapse: (a) 718 carbon dioxide molecules; (b) 1368 carbon dioxide molecules; (c) the cross-sectional view of Fig. (b); (d) 733 oxygen molecules; (e) 1409 oxygen molecules; (f) the cross-sectional view of Fig. (e). The intercepted range of water molecules in the figure is between z = 30–40 nm. The diameter of the nanobubble is 14 nm.

    图 23  不同冲量下纳米气泡塌陷后形态比较 (a) u1t3, 1368个二氧化碳分子; (b)图(a)的截面图; (c) u1t5, 1368个二氧化碳分子; (d) u1t3, 1409个氧气分子; (e)图(d)的截面图; (f) u1t5, 1409个氧气分子. 图中水分子截取的范围为z = 30—40 nm之间. 纳米气泡的直径为14 nm

    Fig. 23.  The shape comparison of nanobubbles after crushing under different impulses: (a) u1t3, 1368 carbon dioxide molecules; (b) the cross-sectional view of Fig. (a); (c) u1t5, 1368 carbon dioxide molecules; (d) u1t3, 1409 oxygen molecules; (e) the cross-sectional view of Fig. (d); (f) u1t5, 1409 oxygen molecules. The intercepted range of water molecules in the figure is between z = 30–40 nm. The diameter of the nanobubble is 14 nm.

    图 24  不同直径的含气纳米气泡完全塌陷前后的形态变化 (a)—(c)直径为14 nm的含718个二氧化碳分子的纳米气泡, 其中(c)是(b)的截面图; (d)—(f)直径为10 nm的含223个二氧化碳分子的纳米气泡, 其中(f)是(e)的截面图; (g)—(i)直径为14 nm的含733个氧气分子的纳米气泡, 其中(i)是(h)的截面图; (j)—(l)直径为10 nm的含232个氧气分子的纳米气泡, 其中(l)是(k)的截面图. 8 ps时水分子截取的范围为z = 23—33 nm之间, 18 ps时水分子截取的范围为z = 31—42 nm之间

    Fig. 24.  The morphological changes of gas-containing nanobubbles with different diameters before and after they are completely collapsed: (a)–(c) nanobubble with a diameter of 14 nm containing 718 carbon dioxide molecules, where (c) is the cross-sectional view of (b); (d)–(f) nanobubble with a diameter of 10 nm containing 223 carbon dioxide molecules, where (f) is the cross-sectional view of (e); (g)–(i) nanobubble with a diameter of 14 nm containing 733 oxygen molecules, where (i) is the cross-sectional view of (h); (j)–(l) nanobubble with a diameter of 14 nm containing 232 oxygen molecules, where (l) is the cross-sectional view of (k). The intercepted range of water molecules at 8 ps is between z = 23–33 nm, and the intercepted range of water molecules at 18 ps is between z = 31–42 nm.

    图 25  u1t5(up = 1 km/s, τs = 5 ps)条件下不同时刻含二氧化碳纳米气泡(1368个二氧化碳分子)完全塌陷前后的二维密度分布. 纳米气泡的直径为14 nm

    Fig. 25.  The two-dimensional density distribution before and after the complete collapse of carbon dioxide-containing nanobubble (1368 carbon dioxide molecules) at different moments under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 26  u1t5(up = 1 km/s, τs = 5 ps)条件下16 ps时真空与含二氧化碳纳米气泡完全塌陷后的二维密度分布. 纳米气泡的直径为14 nm

    Fig. 26.  The two-dimensional density distribution before and after the complete collapse of vacuum and carbon dioxide-containing nanobubbles at 16 ps under the condition of u1t5 (up = 1 km/s, τs = 5 ps). The diameter of the nanobubble is 14 nm.

    图 27  不同冲量下(u1t5和u1 t3)含氧气纳米气泡(1409个氧气分子)完全塌陷后的二维密度分布. 纳米气泡的直径为14 nm. u1t5条件下为18 ps时刻, u1t3条件下为28 ps时刻

    Fig. 27.  The two-dimensional density distribution before and after the complete collapse of oxygen-containing nanobubbles (1409 carbon dioxide molecules) under different impulses (u1t5 and u1t3). The diameter of the nanobubble is 14 nm. It is 18 ps under condition of u1t5 and 28 ps under condition of u1t3.

    图 28  u1t5(up = 1 km/s, τs = 5 ps)条件下不同直径的(14和10 nm)含氧气纳米气泡完全塌陷前后的二维密度分布. 14 nm纳米气泡含733个氧气分子, 10 nm纳米气泡含232个氧气分子

    Fig. 28.  The two-dimensional density distribution before and after the complete collapse of oxygen-containing nanobubbles with different diameters (14 and 10 nm) under the condition of u1t5 (up = 1 km/s, τs = 5 ps). A nanobubble with a diameter of 14 nm contains 733 oxygen molecules, and a nanobubble with a diameter of 10 nm contains 232 oxygen molecules.

    表 1  二氧化碳的力场参数

    Table 1.  Force field parameters of carbon dioxide.

    qCqOεC/(kJ·mol)εO/(kJ·mol–1)σCσOkCO/(kJ·mol–1·Å2)r0COkOCO/(kJ·mol–1·rad2)θ0OCO
    +0.6512 e–0.3256 e0.23400.66832.8003.02884431.162451.9180.0°
    下载: 导出CSV

    表 2  氧气的力场参数

    Table 2.  Force field parameters of oxygen.

    qOεO/(kJ·mol–1)σOk/(kJ·mol–1·nm4)r0
    0.0 e0.49973.4002.2843 e+071.22
    下载: 导出CSV

    表 3  冲击过程模拟细节

    Table 3.  Simulation details of impact process.

    序号名称纳米气泡直径/nm粒子速度/(km·s–1)活塞停止时间/ps所含气体及气体分子数
    1u1t5_vacuum_10 nm101.05真空
    2u1t5_CO2(223)_10 nm101.05二氧化碳/223
    3u1t5_O2(232)_10 nm101.05氧气/232
    4u1t3 t_vacuum_14 nm141.03真空
    5u1t3_ CO2(1368)_14 nm141.03二氧化碳/1368
    6u1t3_ O2(1409)_14 nm141.03氧气/1409
    7u1t5_vacuum_14 nm141.05真空
    8u1t5_CO2(718)_14 nm141.05二氧化碳/718
    9u1t5_CO2(1368)_14 nm141.05二氧化碳/1368
    10u1t5_O2(733)_14 nm141.05氧气/733
    11u1t5_O2(1409)_14 nm141.05氧气/1409
    下载: 导出CSV
  • [1]

    Mayorga M A 1997 Toxicology 121 17Google Scholar

    [2]

    Scott T E, Kirkman E, Haque M, Gibb I E, Mahoney P, Hardman J G 2017 Br. J. Anaesth. 118 311Google Scholar

    [3]

    Hoge C W, Mcgurk D, Thomas J L, Cox A L, Engel C C, Castro C A 2008 N. Engl. J. Med. 358 453Google Scholar

    [4]

    Rosenfeld J V, McFarlane A C, Bragge P, Armonda R A, Grimes J B, Ling G S 2013 Lancet Neurol. 12 882Google Scholar

    [5]

    李新岭, 沈岳, 赖西南, 马彦波, 刘海, 王丽丽, 陈强 2016 解放军医学杂志 41 689Google Scholar

    Li X L, Shen Y, Lai X L, Ma Y B, Liu H, Wang L L, Chen Q 2016 Med. J. Chin. People’s Liberation Army 41 689Google Scholar

    [6]

    陈吉钢, 张丹枫, 王春晖, 李振兴, 董艳, 侯立军 2019 第二军医大学学报 40 763Google Scholar

    Chen J G, Zhang D F, Wang C H, Li Zh X, Dong Y, Hou L J 2019 Acad. J. Second Military Med. Univ. 40 763Google Scholar

    [7]

    栗志杰, 由小川, 柳占立, 杜智博, 张仡, 杨策, 庄茁 2020 爆炸与冲击 40 100Google Scholar

    Li Z J, You X C, Liu Z L, Du Z B, ZhangY, Yang C, Zhuang Z 2020 Explosion and shock 40 100Google Scholar

    [8]

    Axelsson H, Yelverton J T 1996 J. Trauma Acute Care Surg. 40 S31Google Scholar

    [9]

    Stuhmiller J H, Ho H H, Vorst M J V, Dodd K T, Fitzpatrick T, Mayorga M 1996 J. Biomech. 29 227Google Scholar

    [10]

    周杰, 陶钢, 王健 2012 爆炸与冲击 32 418Google Scholar

    Zhou J, Tao G, Wang J 2012 Explosion and shock 32 418Google Scholar

    [11]

    徐成, 巨圆圆, 胡明, 龙仁荣, 阮狄克 2019 转化医学杂志 8 179Google Scholar

    Xu C, Ju Y Y, Hu M, Long R R, Ruan D K 2019 Translational Medicine Journal 8 179Google Scholar

    [12]

    Adhikari U, Goliaei A, Berkowitz M L 2016 Phys. Chem. Chem. Phys. 18 32638Google Scholar

    [13]

    Larina I V, Evers B M, Esenaliev R O 2005 Anticancer Res. 25 149

    [14]

    Parker J L, Claesson P M, Attard P 1994 J. Phys. Chem. 98 8468Google Scholar

    [15]

    Ishida N, Inoue T, Miyahara M, Higashitani K 2000 Langmuir 16 6377Google Scholar

    [16]

    Lou S T, Ouyang Z Q, Zhang Y, Li X J, Yang F J 2000 J. Vac. Sci. Technol., B 18 2573Google Scholar

    [17]

    Ohgaki K, Khanh N Q, Joden Y, Tsuji A, Nakagawa T 2010 Chem. Eng. Sci. 65 1296Google Scholar

    [18]

    Peng H, Birkett G R, Nguyen A V 2015 Adv. Colloid Interface Sci. 222 573Google Scholar

    [19]

    Bunkin N F, Shkirin A V, Suyazov N V, Babenko V A, Sychev A A, Penkov N V, Belosludtsev K N, Gudkov S V 2016 J. Phys. Chem. B 120 1291Google Scholar

    [20]

    Pan G, He G, Zhang M, Zhou Q, Tyliszczak T, Tai R, Guo J, Bi L, Wang L, Zhang H 2016 Langmuir 32 11133Google Scholar

    [21]

    Ohl S W, Klaseboer E, Khoo B C 2015 Interface Focus 5 20150019Google Scholar

    [22]

    Ding Z, Gracewski S M 1996 J. Fluid Mech. 309 183Google Scholar

    [23]

    Hawker N, Ventikos Y 2012 J. Fluid Mech. 701 59Google Scholar

    [24]

    Vedadi M, Choubey A, Nomura K, Kalia R K, Nakano A, Vashishta P, Van Duin A C T 2010 Phys. Rev. Lett. 105 014503Google Scholar

    [25]

    Choubey A, Vedadi M, Nomura K, Kalia R K, Nakano A, Vashishta P 2011 Appl. Phys. Lett. 98 023701Google Scholar

    [26]

    Santo K P, Berkowitz M L 2014 J. Chem. Phys. 140 054906Google Scholar

    [27]

    Santo K P, Berkowitz M L 2015 J. Phys. Chem. B 119 8879Google Scholar

    [28]

    Adhikari U, Goliaei A, Berkowitz M L 2015 J. Phys. Chem. B 119 6225Google Scholar

    [29]

    Fu H, Comer J, Cai W, Chipot C 2015 J. Phys. Chem. Lett. 6 413Google Scholar

    [30]

    Lau E Y, Berkowitz M L, Schwegler E 2016 Biophys. J. 110 147Google Scholar

    [31]

    Goliaei A, Adhikari U, Berkowitz M L 2015 ACS Chem. Neurosci. 6 1296Google Scholar

    [32]

    Wu Y T, Adnan A 2017 Sci. Rep. 7 1Google Scholar

    [33]

    Vedadi M H, Haas S 2011 Appl. Phys. Lett. 99 154105Google Scholar

    [34]

    Sun D D, Lin X, Zhang Z, Gu N 2016 J. Phys. Chem. C 120 18803Google Scholar

    [35]

    Lu X M, Yuan B, Zhang X R, Yang K, Ma Y Q 2017 Appl. Phys. Lett. 110 023701Google Scholar

    [36]

    Nan N, Si D, Hu G 2018 J. Chem. Phys. 149 074902Google Scholar

    [37]

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J 2005 J. Comput. Chem. 26 1701Google Scholar

    [38]

    Hess B, Kutzner C, van der Spoel D, Lindahl E 2008 J. Chem. Theory Comput. 4 435Google Scholar

    [39]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [40]

    Oostenbrink C, Villa A, Mark A E, Van Gunsteren W F 2004 J. Comput. Chem. 25 1656Google Scholar

    [41]

    Berendsen H J, Postma J P, van Gunsteren W F, Hermans J 1981 Intermolecular Forces (Dordrecht: Springer) pp331−342

    [42]

    Berweger C D, Gunsteren W F V, Müller-Plathe F 1995 Chem. Phys. Lett. 232 429Google Scholar

    [43]

    Cygan R T, Romanov V N, Myshakin E M 2012 J. Phys. Chem. C 116 13079Google Scholar

    [44]

    Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C, Oostenbrink C, Mark A E 2011 J. Chem. Theory Comput. 7 4026Google Scholar

    [45]

    Koziara K B, Stroet M, Malde A K, Mark A E 2014 J. Comput.-Aided Mol. Des. 28 221Google Scholar

    [46]

    Stroet M, Caron B, Visscher K M, Geerke D P, Malde A K, Mark A E 2018 J. Chem. Theory Comput. 14 5834Google Scholar

    [47]

    Lau E Y, Berkowitz M L, Schwegler E 2016 Biophysical Journal 110 147

    [48]

    Wang X F, Tao G, Wen P, Ren B X, Pang C Q, Du C X 2020 J. Phys. Chem. B 124 9535Google Scholar

    [49]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [50]

    Ollila O S, Risselada H J, Louhivuori M, Lindahl E, Vattulainen I, Marrink S J 2009 Phys. Rev. Lett. 102 078101Google Scholar

    [51]

    Vanegas J M, Torres-Sánchez A, Arroyo M 2014 J. Chem. Theory Comput. 10 691Google Scholar

    [52]

    Torres-Sánchez A, Vanegas J M, Arroyo M 2015 Phys. Rev. Lett. 114 258102Google Scholar

  • [1] 张雪松, 范振忠, 仝其雷, 付沅峰. 基于分子模拟方法的纳米气泡溃灭过程分析. 物理学报, 2024, 73(20): 204701. doi: 10.7498/aps.73.20241105
    [2] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [3] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [4] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [5] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [6] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [7] 马文, 祝文军, 张亚林, 经福谦. 纳米多晶铁的冲击相变研究. 物理学报, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [8] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [9] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [10] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [12] 杨其利, 张广财, 许爱国, 赵艳红, 李英骏. 冲击条件下含纳米空洞的单晶铜的塌缩. 物理学报, 2008, 57(2): 940-946. doi: 10.7498/aps.57.940
    [13] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [15] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [16] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [17] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [19] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  6057
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-01-31
  • 上网日期:  2021-07-02
  • 刊出日期:  2021-07-05

/

返回文章
返回