搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子辐照对掺镱光纤材料光学特性的影响

李奋飞 周晓燕 张魁宝 石兆华 陈进湛 叶鑫 吴卫东 李波

引用本文:
Citation:

中子辐照对掺镱光纤材料光学特性的影响

李奋飞, 周晓燕, 张魁宝, 石兆华, 陈进湛, 叶鑫, 吴卫东, 李波

Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials

Li Fen-Fei, Zhou Xiao-Yan, Zhang Kui-Bao, Shi Zhao-Hua, Chen Jin-Zhan, Ye Xin, Wu Wei-Dong, Li Bo
PDF
HTML
导出引用
  • 采用改进型化学气相沉积法结合稀土螯合物掺杂制备了系列掺镱光纤预制棒及光纤, 并测试了光纤(预制棒)辐照、退火前后的光学性能. 结果表明: 中子辐照后掺镱光纤材料中与Al相关的缺陷浓度增多, 导致光纤材料在可见光区域吸收损耗增加. Ce离子的掺杂可缓减铝氧空位中心(Al-OHC)等色心缺陷的增加, 从而有效抑制掺镱光纤的辐致暗化效应. 热退火可降低中子辐致色心缺陷的浓度从而降低光纤材料的吸收, 在一定程度上消除暗化效应.
    Yb-doped fiber laser is a very appealing technology to implement space communication, laser radar and nuclear facilities due to its reduced weight, size, high efficiency, high peak power combined with good beam quality. However, Yb-doped fiber materials will suffer a harsh ionizing radiation (such as neutron, proton and electron) under the condition of irradiation. The radiation-induced darkening effect can lead the fiber loss to increase obviously, the laser slope efficiency to decrease drastically, and even no laser output to be observed in severe cases. Therefore, it is necessary to conduct in-depth research on the performance changes of Yb-doped fiber materials subjected to the irradiation. In this paper, a series of Yb-doped optical fibers and optical fibers is prepared by the improved chemical vapor deposition method combined with rare-earth chelate-doped. And the optical properties of the optical fiber before and after being irradiated and annealed are tested. We mainly investigate the absorption spectrum of Yb-doped fiber material. The results show that the concentration of Al-related defects in the Yb-doped fiber material increases after neutron irradiation, and the absorption loss in the visible region increases. And the color center defects produced by the irradiation will significantly reduce the Yb ion fluorescence lifetime. The doping of Ce ions can reduce the Al-oxygen hole center (Al-OHC) color center defects, and can suppresse the radiation-induced darkening effect of Yb-doped fiber to a certain extent. Thermal annealing can reduce the absorption of fiber material by reducing the concentration of neutron radiation-induced color center defects, and thus eliminating the darkening effect to a certain extent. Finally, with our previous research, we find that neutron irradiation and ray irradiation have similar effects on the optical properties of Yb-doped fiber materials. The main reason is that the electron ionization effects occur due to both ray irradiation and neutron irradiation to generate free electron and hole pairs, which then combine with the original defects in the material to turn into color center defects. However, the color center defects caused by neutron irradiation are more stable and require thermal annealing to be eliminated. And the results obtained in this study provide theoretical basis and solution for developing the Yb-doped fibers with high laser performance and high radiation resistance.
      通信作者: 周晓燕, zhouxy@caep.cn ; 张魁宝, zhangkuibao@swust.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1830203)和国家自然科学基金(批准号: 51672228)资助的课题
      Corresponding author: Zhou Xiao-Yan, zhouxy@caep.cn ; Zhang Kui-Bao, zhangkuibao@swust.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1830203) and the National Natural Science Foundation of China (Grant No. 51672228)
    [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar

    [3]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar

    [4]

    黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

    [5]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [6]

    Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar

    [7]

    Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F

    [9]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58

    Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58

    [10]

    Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar

    [11]

    Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar

    [12]

    Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar

    [13]

    Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar

    [14]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003

    [15]

    Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar

    [16]

    Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [18]

    Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar

    [19]

    Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar

    [20]

    Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar

    [21]

    Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar

    [22]

    Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar

    [23]

    Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar

    [24]

    Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar

    [25]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [26]

    Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar

    [27]

    Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar

    [28]

    Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar

    [29]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k

    [30]

    Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar

    [31]

    Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar

  • 图 1  光纤吸收谱测试系统

    Fig. 1.  The absorption spectra of optical fibers measurement configuration.

    图 2  辐照前后 (a)掺镱光纤预制棒S1吸收光谱和(b)掺镱光纤预制棒S2吸收光谱, 图(b)中的插图给出了980 nm附近的放大图

    Fig. 2.  Absorption spectra of (a) optical fiber preform S1 and (b) optical fiber preform S2 before and after irradiation, the insets of panel (b) show the enlarged views near 980 nm.

    图 3  S1光纤预制棒辐照后实验数据及高斯拟合

    Fig. 3.  Experimental date and decomposition with Gaussian of S1 optical fiber preform after irradiation.

    图 4  S2光纤预制棒辐照后实验数据及高斯拟合

    Fig. 4.  Experimental date and decomposition with Gaussian of S2 optical fiber preform after irradiation.

    图 5  辐致色心缺陷转变模型

    Fig. 5.  Model of radiation darkening color center defects transfer.

    图 6  中子辐照前后光纤的吸收谱

    Fig. 6.  Absorption spectrum of optical fibers before and after neutron irradiation.

    图 7  中子辐照前后及热退火后(a)掺镱光纤预制棒S1吸收光谱和(b)掺镱光纤预制棒S2吸收光谱

    Fig. 7.  Absorption spectra of (a) optical fiber preform S1 and (b) optical fiber preform S2 before and after irradiation and after annealing.

    表 1  光纤及预制棒的EPMA元素分析

    Table 1.  Electron probe microanalysis (EPMA) of optical fibers and optical fiber preforms.

    No.Doping concentration/mol%
    YbAlCe
    1#0.060.510
    2#0.050.530.02
    S10.130.780
    S20.111.560.02
    下载: 导出CSV

    表 2  辐照前后及热退火后Yb3+的荧光寿命

    Table 2.  Fluorescence lifetime of Yb3+ before and after irradiation and after annealing.

    No.t/ms
    τ1τ2τ3
    S10.9480.7490.929
    S20.9390.7470.907
    下载: 导出CSV
  • [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar

    [3]

    Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar

    [4]

    黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

    [5]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [6]

    Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar

    [7]

    Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F

    [9]

    宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58

    Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58

    [10]

    Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar

    [11]

    Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar

    [12]

    Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar

    [13]

    Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar

    [14]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003

    [15]

    Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar

    [16]

    Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [18]

    Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar

    [19]

    Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar

    [20]

    Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar

    [21]

    Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar

    [22]

    Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar

    [23]

    Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar

    [24]

    Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar

    [25]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [26]

    Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar

    [27]

    Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar

    [28]

    Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar

    [29]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k

    [30]

    Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar

    [31]

    Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar

  • [1] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] 李世雄, 陈德良, 张正平, 隆正文. 掺Be硼团簇BeB$ _{ n}^{\bf 0/–} $ (n = 10—15)的基态结构和性质. 物理学报, 2020, 69(19): 193101. doi: 10.7498/aps.69.20200756
    [3] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [4] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [5] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [6] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [7] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [8] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [9] 王友发, 吴周礼, 李文润, 王帅, 童红双, 阮永丰. 掺铈YVO4 晶体的发光特性及铈离子的价态分析. 物理学报, 2012, 61(22): 228105. doi: 10.7498/aps.61.228105
    [10] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [11] 卢喜瑞, 崔春龙, 张东, 陈梦君, 杨岩凯. 锆英石的抗γ射线辐照能力和Rietveld结构精修. 物理学报, 2011, 60(7): 078901. doi: 10.7498/aps.60.078901
    [12] 肖志强, 李蕾蕾, 张波, 徐静, 陈正才. 基于SOI技术的单层多晶EEPROM和SONOS EEPROM抗总剂量辐照特性研究. 物理学报, 2011, 60(2): 028502. doi: 10.7498/aps.60.028502
    [13] 李蕾蕾, 于宗光, 肖志强, 周昕杰. SOI SONOS EEPROM 总剂量辐照阈值退化机理研究. 物理学报, 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [14] 喻军, 周朋, 赵衡煜, 吴锋, 夏海平, 苏良碧, 徐军. γ射线辐照诱导Bi:α-BaB2O4单晶近红外宽带发光的研究. 物理学报, 2010, 59(5): 3538-3541. doi: 10.7498/aps.59.3538
    [15] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究. 物理学报, 2009, 58(2): 860-864. doi: 10.7498/aps.58.860
    [16] 彭绍泉, 杜 磊, 庄奕琪, 包军林, 何 亮, 陈伟华. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型. 物理学报, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [17] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [18] 何寿杰, 陈岐岱, 李雪辰, 艾希成, 张建平, 王 龙. 圆锥气泡声致发光光脉冲和光谱. 物理学报, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [20] 辛煜, 宁兆元, 程珊华, 陆新华, 甘肇强, 黄松. ECR-CVD法制备的a-C:F:H薄膜在N2气氛中的热退火研究. 物理学报, 2002, 51(2): 439-443. doi: 10.7498/aps.51.439
计量
  • 文章访问数:  4902
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-05-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回