-
Yb-doped fiber laser is a very appealing technology to implement space communication, laser radar and nuclear facilities due to its reduced weight, size, high efficiency, high peak power combined with good beam quality. However, Yb-doped fiber materials will suffer a harsh ionizing radiation (such as neutron, proton and electron) under the condition of irradiation. The radiation-induced darkening effect can lead the fiber loss to increase obviously, the laser slope efficiency to decrease drastically, and even no laser output to be observed in severe cases. Therefore, it is necessary to conduct in-depth research on the performance changes of Yb-doped fiber materials subjected to the irradiation. In this paper, a series of Yb-doped optical fibers and optical fibers is prepared by the improved chemical vapor deposition method combined with rare-earth chelate-doped. And the optical properties of the optical fiber before and after being irradiated and annealed are tested. We mainly investigate the absorption spectrum of Yb-doped fiber material. The results show that the concentration of Al-related defects in the Yb-doped fiber material increases after neutron irradiation, and the absorption loss in the visible region increases. And the color center defects produced by the irradiation will significantly reduce the Yb ion fluorescence lifetime. The doping of Ce ions can reduce the Al-oxygen hole center (Al-OHC) color center defects, and can suppresse the radiation-induced darkening effect of Yb-doped fiber to a certain extent. Thermal annealing can reduce the absorption of fiber material by reducing the concentration of neutron radiation-induced color center defects, and thus eliminating the darkening effect to a certain extent. Finally, with our previous research, we find that neutron irradiation and ray irradiation have similar effects on the optical properties of Yb-doped fiber materials. The main reason is that the electron ionization effects occur due to both ray irradiation and neutron irradiation to generate free electron and hole pairs, which then combine with the original defects in the material to turn into color center defects. However, the color center defects caused by neutron irradiation are more stable and require thermal annealing to be eliminated. And the results obtained in this study provide theoretical basis and solution for developing the Yb-doped fibers with high laser performance and high radiation resistance.
-
Keywords:
- Yb-doped fiber /
- radiation /
- spectra /
- thermal annealing
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar
[3] Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar
[4] 黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar
Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar
[5] Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar
[6] Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar
[7] Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar
[8] Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F
[9] 宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58
Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58
[10] Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar
[11] Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar
[12] Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar
[13] Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar
[14] 李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003
Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003
[15] Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar
[16] Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar
[17] Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809
[18] Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar
[19] Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar
[20] Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar
[21] Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar
[22] Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar
[23] Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar
[24] Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar
[25] Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar
[26] Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar
[27] Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar
[28] Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar
[29] Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k
[30] Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar
[31] Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar
-
表 1 光纤及预制棒的EPMA元素分析
Table 1. Electron probe microanalysis (EPMA) of optical fibers and optical fiber preforms.
No. Doping concentration/mol% Yb Al Ce 1# 0.06 0.51 0 2# 0.05 0.53 0.02 S1 0.13 0.78 0 S2 0.11 1.56 0.02 表 2 辐照前后及热退火后Yb3+的荧光寿命
Table 2. Fluorescence lifetime of Yb3+ before and after irradiation and after annealing.
No. t/ms τ1 τ2 τ3 S1 0.948 0.749 0.929 S2 0.939 0.747 0.907 -
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Lu K, Dutta N K 2002 J. Appl. Phys. 91 576Google Scholar
[3] Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193Google Scholar
[4] 黄宏琪, 赵楠, 陈瑰, 胡姝玲, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar
Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar
[5] Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar
[6] Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A, Ouerdane Y 2012 Opt. Express 20 8457Google Scholar
[7] Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N, Baggio J, Paillet P, Cannas M, Bisutti J, Meunier J P, Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473Google Scholar
[8] Fox B P, Simmons-Potter K, Simmons J H, Thomes Jr W J, Bambha R P, Kliner D A V 2008 Proc. SPIE Fiber Lasers V:Technol. Syst. Appl. 6873 68731F
[9] 宋镜明, 郭建华, 王学勤, 胡姝玲 2012 激光与光电子学进展 49 58
Song J M, Guo J H, Wang X Q, Hu Z L 2012 Laser Optoelectron. Prog. 49 58
[10] Jetschke S, Unger S, Schwuchow A, Leich M, Kirchhof J 2008 Opt. Express 16 15540Google Scholar
[11] Deschamps T, Ollier N, Vezin H, Gonnet C 2012 J. Chem. Phys. 136 014503Google Scholar
[12] Jetschke S, Unger S, Schwuchow A, Leich M, Jager M 2016 Opt. Express 24 13009Google Scholar
[13] Arai K, Namikawa H, Kumata K, Honda T 1986 J. Appl. Phys. 59 3430Google Scholar
[14] 李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003
Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003
[15] Wang F, Shao C Y, Yu C L, Wang S K, Zhang L, Gao G J, Hu L L 2019 J. Appl. Phys. 125 173104Google Scholar
[16] Origlio G, Messina F, Girard S, Cannas M, Boukenter A, Ouerdane Y 2010 J. Appl. Phys. 108 123103Google Scholar
[17] Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809
[18] Engholm M, Jelger P, Laurell F, Norin L 2009 Opt. Lett. 34 1285Google Scholar
[19] Montiel i Ponsoda J J, Söderlund M J, Koplow J P, Koponen J J, Honkanen S 2010 Appl. Opt. 49 4139Google Scholar
[20] Zhao N, Xing Y B, Li J M, Liao L, Wang Y B, Peng J G, Yang L Y, Dai N L, Li H Q, Li J Y 2015 Opt. Express 23 25272Google Scholar
[21] Peng K, Wang Z, Zhan H, Ni L, Gao C, Wang, X L, Wang Y Y, Wang J J, Jing F, Lin A X 2016 Electron. Lett. 52 1942Google Scholar
[22] Liu S, Zhan H, Peng K, Sun S H, Li Y W, Jiang J L, Ni L, Wang X L, Yu J, Zhu R H, Wang J J, Jing F, Lin A X 2018 Opt. Fiber Technol. 46 297Google Scholar
[23] Feng W, She S F, Wang P F, Liu Y S, Chang C, Hou C Q, Li W N 2020 J. Non-Cryst. Solids 528 119540Google Scholar
[24] Mady F, Guttilla F, Benabdesselam M, Blanc F 2019 Opt. Mater. Express 9 2466Google Scholar
[25] Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar
[26] Shao C Y, Xu W B, Ollier N, Guzik M, Boulon G, Yu L, Zhang L, Yu C L, Wang S K, Hu L L 2016 J. Appl. Phys. 120 153101Google Scholar
[27] Chen X D, Heng X B, Tang G W, Zhu T T, Sun M, Shan X J, Wen X, Guo J Y, Qian Q, Yang Z M 2016 Opt. Express 24 9149Google Scholar
[28] Mady F, Duchez J B, Mebrouk Y, Benabdesselam M 2014 AIP Conf. Proc. 1624 87Google Scholar
[29] Arai T, Ichii K, Tanigawa S, Fujimaki M 2011 Proc. SPIE Fiber Lasers V: Technol. Syst. Appl. 7914 79140k
[30] Stroud J S 1965 J. Chem. Phys. 43 2442Google Scholar
[31] Söderlund M J, Montiel i Ponsoda J J, Koplow J P, Honkanen S 2009 Opt. Express 17 9940Google Scholar
计量
- 文章访问数: 4932
- PDF下载量: 90
- 被引次数: 0