-
电子束流箍缩是强流电子束二极管工作过程中广泛存在的物理现象. 束流径向箍缩率定义为靶面形成的束斑(环)面积随时间的变化率, 是判断二极管的束流箍缩情况和工作特性的重要指标, 目前对其的研究方法以光学诊断和针对特定二极管的理论估算为主. 在现有研究的基础上, 以 “强光一号”强箍缩短γ二极管为对象, 给出了适用于该“环-板”构型二极管的径向箍缩率理论估算公式, 并分别建立了基于粒子模拟和实验测量箍缩中心偏移的箍缩率计算方法, 三种方法给出的径向箍缩率值分别为8.43, 8.70及7.89 cm2/ns, 三者相对偏差 < 10%. 为强流二极管径向箍缩率的研究提供了一种新的思路.Electron beam pinching is a common physical phenomenon in the working process of high-current electron beam diodes. The radial collapse velocity (Va) of the beam is an important index to determine the beam pinching and the working characteristics of the diode. The current research methods are based on optical diagnosis and theoretical estimation formulas for a specific diode. The radial collapse velocity of Qiangguang-I accelerator’s tight-pinched short γ diode can be obtained by the following three methods in this paper: 1) a theoretical formula, which is used to calculate the radial collapse velocity on the basis of the existing research results, and can very quickly determine the pinching situation because in this case this formula just needs a diode pinching current; 2) the method of calculating Va, which is established based on particle-in-cell simulation. The simulation model includes the anode ion current, thus can simulate the pinching of electron beam more precisely; 3) a method of calculating Va, which is given by measuring the pinch center offset and the γ-ray PIN waveform, because the Qiangguang-I γ diode is inconvenient for optical diagnosis. The radial collapse velocities obtained by the above three methods are 8.43, 8.70 and 7.89 cm2/ns respectively, and the relative difference among the three methods is < 10%. The third method obtains a slightly smaller value because the ion current assumed in the theory and simulation is H+. The ion current composition in the actual diode is complex, the diffusion speed is slower, then the radial collapse velocity is smaller. Compared with the typical Va value (2–4 cm2/ns) of the Gamble II accelerator diode given by the Blaugrund team, the Va value of the short γ diode of the Qiangguang-I accelerator is nearly doubled. The diode on Qiangguang-I, which works after a plasma opening switch (POS), has a very short rising time (less than 10 ns), and pinches quickly. In contrast, the rising time of the Gamble II accelerator diode is about 40 ns, which is different from the working status of the Qiangguang-I diode. This paper provides a new way to study the radial collapse velocity of high-current diodes.
-
Keywords:
- tight-pinched /
- high-current electron beam diode /
- radial collapse velocity /
- calculation methods
[1] 刘锡三 2007 强流粒子束及其应用 (北京: 国防工业出版社) 第201, 202页
Liu X S 2007 Intense Particle Beams and Its Applications (Beijing: National Defense Industry Press) pp201, 202 (in Chinese)
[2] Ekdahl C 2002 IEEE Trans. Plasma Sci. 30 254Google Scholar
[3] 丛培天 2020 强激光与粒子束 32 025002Google Scholar
Cong P T 2020 High Pow. Las. Part. Beam. 32 025002Google Scholar
[4] Mesyats G A 2005 Pulsed Power (New York: Springer) p433
[5] Blaugrund A E, Cooperstein G, Goldstein S A 1975 International Topical Conference on Electron Beam Research & Technology Albuquerque, NM, USA, November 3–5, 1975 p13224837
[6] Blaugrund A E, Cooperstein G, Goldstein S A 1977 Phys. Fluids 20 1185Google Scholar
[7] 丛培天, 陈伟, 韩娟娟, 郭宁, 苏兆峰, 张信军, 王亮平 2010 强激光与粒子束 22 2773Google Scholar
Cong P T, Chen W, Han J J, Guo N, Su Z F, Zhang X J, Wang L P 2010 High Pow. Las. Part. Beam. 22 2773Google Scholar
[8] 郭宁, 王亮平, 丛培天, 乔开来, 李岩, 张信军 2010 核电子学与探测技术 30 1196Google Scholar
Guo N, Wang L P, Cong P T, Qiao K L, Li Yan, Zhang X J, 2010 Nucl. Electron. Detect. Technol. 30 1196Google Scholar
[9] 孙江, 胡杨, 张金海, 蔡丹, 苏兆锋, 赵博文, 孙铁平, 孙剑锋, 呼义翔, 彭士香 2021 原子能科学技术 55 328Google Scholar
Sun J, Hu Y, Zhang J H, Cai D, Su Z F, Zhao B W, Sun T P, Sun J F, Hu Y X, Peng S X 2021 Atom. Eng. Sci. Technol. 55 328Google Scholar
[10] Goldstein S A, Davidson R C, Lee R, Siambis J G 1975 International Topical Conference on Electron Beam Research & Technology Albuquerque, NM, USA, November 3–5, 1975 p13224836
[11] Swanekamp S B, Cooperstein G, Schumer J W, Mosher D, Ottinger P F, Young F C, Cornrnisso R J 2004 International Conference on High-Power Particle Beams St. Petersburg, Russia, July 18−23, 2004 p12821202
[12] Swanekamp S B, Commisso R J, Cooperstein G, Ottinger P F, Schumer J W 2000 Phys. Plasmas 7 5214Google Scholar
[13] 黄建军 2003 硕士学位论文 (西安: 西北核技术研究所)
Kuai B 2003 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[14] 蒯斌, 邱爱慈, 王亮平, 丛培天, 梁天学 2004 强激光与粒子束 16 1603
Kuai B, Qiu A C, Wang L P, Cong P T, Liang T X, Yin J H 2004 High Pow. Las. Part. Beam. 16 1603
[15] Miller R B 1982 Introduction to the Physics of Intense Charged Particles (New York and London: Plenum Press) pp67−70
[16] Cavalleri G, Spavieri G, Spinelli G 1996 Eur. J. Phys. 17 205Google Scholar
[17] 李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 12 1866
Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Pow. Las. Part. Beam. 12 1866
[18] Sanford T W L, Halbleib J A, Poukey J W, Pregenzer A L, Pate R C, Heath C E, R. Mock G A, Mastin D C Ghiglia T J, Roemer P W, Spence G A 1989 J. Appl. Phys. 66 10Google Scholar
[19] Cai D, Liu L, Ju J C, Zhang T Y, Zhao X L, Zhou H Y 2015 Phys. Plasmas 22 073108Google Scholar
[20] Seidel D B, Goplen B C, Van Devender J P 1980 Fourteenth Pulse Power Modulator Symposium Albuquerque, NM, USA, June 3−5, 1990 p1980
[21] Lai D G, Qiu M T, Xu Q F, Huang Z L 2016 Phys. Plasmas 23 8Google Scholar
[22] 米夏兹 Г А 著 (李国政 译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第249−262页
Michatz Г А (translated by Li G Z) 2007 Vacuum Discharge Physics and High-power Pulse Technology (Beijing: National Defense Industry Press) pp249−262 (in Chinese)
-
-
[1] 刘锡三 2007 强流粒子束及其应用 (北京: 国防工业出版社) 第201, 202页
Liu X S 2007 Intense Particle Beams and Its Applications (Beijing: National Defense Industry Press) pp201, 202 (in Chinese)
[2] Ekdahl C 2002 IEEE Trans. Plasma Sci. 30 254Google Scholar
[3] 丛培天 2020 强激光与粒子束 32 025002Google Scholar
Cong P T 2020 High Pow. Las. Part. Beam. 32 025002Google Scholar
[4] Mesyats G A 2005 Pulsed Power (New York: Springer) p433
[5] Blaugrund A E, Cooperstein G, Goldstein S A 1975 International Topical Conference on Electron Beam Research & Technology Albuquerque, NM, USA, November 3–5, 1975 p13224837
[6] Blaugrund A E, Cooperstein G, Goldstein S A 1977 Phys. Fluids 20 1185Google Scholar
[7] 丛培天, 陈伟, 韩娟娟, 郭宁, 苏兆峰, 张信军, 王亮平 2010 强激光与粒子束 22 2773Google Scholar
Cong P T, Chen W, Han J J, Guo N, Su Z F, Zhang X J, Wang L P 2010 High Pow. Las. Part. Beam. 22 2773Google Scholar
[8] 郭宁, 王亮平, 丛培天, 乔开来, 李岩, 张信军 2010 核电子学与探测技术 30 1196Google Scholar
Guo N, Wang L P, Cong P T, Qiao K L, Li Yan, Zhang X J, 2010 Nucl. Electron. Detect. Technol. 30 1196Google Scholar
[9] 孙江, 胡杨, 张金海, 蔡丹, 苏兆锋, 赵博文, 孙铁平, 孙剑锋, 呼义翔, 彭士香 2021 原子能科学技术 55 328Google Scholar
Sun J, Hu Y, Zhang J H, Cai D, Su Z F, Zhao B W, Sun T P, Sun J F, Hu Y X, Peng S X 2021 Atom. Eng. Sci. Technol. 55 328Google Scholar
[10] Goldstein S A, Davidson R C, Lee R, Siambis J G 1975 International Topical Conference on Electron Beam Research & Technology Albuquerque, NM, USA, November 3–5, 1975 p13224836
[11] Swanekamp S B, Cooperstein G, Schumer J W, Mosher D, Ottinger P F, Young F C, Cornrnisso R J 2004 International Conference on High-Power Particle Beams St. Petersburg, Russia, July 18−23, 2004 p12821202
[12] Swanekamp S B, Commisso R J, Cooperstein G, Ottinger P F, Schumer J W 2000 Phys. Plasmas 7 5214Google Scholar
[13] 黄建军 2003 硕士学位论文 (西安: 西北核技术研究所)
Kuai B 2003 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[14] 蒯斌, 邱爱慈, 王亮平, 丛培天, 梁天学 2004 强激光与粒子束 16 1603
Kuai B, Qiu A C, Wang L P, Cong P T, Liang T X, Yin J H 2004 High Pow. Las. Part. Beam. 16 1603
[15] Miller R B 1982 Introduction to the Physics of Intense Charged Particles (New York and London: Plenum Press) pp67−70
[16] Cavalleri G, Spavieri G, Spinelli G 1996 Eur. J. Phys. 17 205Google Scholar
[17] 李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 12 1866
Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Pow. Las. Part. Beam. 12 1866
[18] Sanford T W L, Halbleib J A, Poukey J W, Pregenzer A L, Pate R C, Heath C E, R. Mock G A, Mastin D C Ghiglia T J, Roemer P W, Spence G A 1989 J. Appl. Phys. 66 10Google Scholar
[19] Cai D, Liu L, Ju J C, Zhang T Y, Zhao X L, Zhou H Y 2015 Phys. Plasmas 22 073108Google Scholar
[20] Seidel D B, Goplen B C, Van Devender J P 1980 Fourteenth Pulse Power Modulator Symposium Albuquerque, NM, USA, June 3−5, 1990 p1980
[21] Lai D G, Qiu M T, Xu Q F, Huang Z L 2016 Phys. Plasmas 23 8Google Scholar
[22] 米夏兹 Г А 著 (李国政 译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第249−262页
Michatz Г А (translated by Li G Z) 2007 Vacuum Discharge Physics and High-power Pulse Technology (Beijing: National Defense Industry Press) pp249−262 (in Chinese)
计量
- 文章访问数: 3942
- PDF下载量: 36
- 被引次数: 0